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Abstract. This paper presents a 64-bit lightweight block cipher TWINE
supporting 80 and 128-bit keys. It enables quite small hardware imple-
mentation similar to the previous proposals, yet enables efficient imple-
mentations on embedded software. Moreover, it allows a compact im-
plementation of unified encryption and decryption. This characteristic
mainly originates from the use of generalized Feistel with many sub-
blocks combined with a recent improvement on the diffusion layer.
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1 Introduction

Recent advances in tiny computing devices, such as RFID and sensor network
nodes, give rise to the need of symmetric encryption with highly-limited re-
sources, called lightweight encryption. While we have AES it is often inap-
propriate for such devices due to their size/power/memory constraints, even
though there are constant efforts for small-footprint AES, e.g., [14, 31, 37]. To
fill the gap, a number of hardware-oriented lightweight block ciphers have been
recently proposed; for instance, DESL [26], HIGHT [21], PRESENT [9], and
KATAN/KTANTAN [13], PRINTcipher [25], and many more.

In this paper, we propose a new lightweight 64-bit block cipher TWINE. It
supports 80 and 128-bit keys. Our purpose is to achieve hardware efficiency while
minimizing the hardware-oriented design choices, such as a bit permutation.
The avoidance of such options may be beneficial to software implementation
and yield a balanced performance on both software and hardware. Lightweight
blockciphers from a similar motivation are also seen in, e.g., KLEIN [19], LBlock
[43], and most recently, LED [18] and Piccolo [40].

For this purpose, we employ Type-2 generalized Feistel structure (GFS) pro-
posed1 by Zheng et al. [44] with 16 nibble-blocks. The drawback of such design is
poor (slow) diffusion property, leading to a slow cipher with quite many rounds.
To overcome the problem, we employ the idea of Suzaki and Minematsu at FSE
’10 [41] which substantially improves diffusion by using a different block shuffle
from the original (cyclic shift). As a result, TWINE is also efficient on (em-
bedded) software and enables compact unification of encryption and decryption.
1 Zheng et al. called it Type-2 Feistel-Type Transformation. The generalized Feistel

structure is an alias taken by, e.g., [39,41].



The features of our proposal are (1) no bit permutation, (2) generalized Feistel-
based, and (3) no Galois-Field matrix. The components are only one 4-bit S-box
and 4-bit XOR. As far as we know, this is the first attempt that combines these
three features. There is a predecessor called LBlock [43] which has some re-
semblances to ours, however TWINE is an independent work and has several
concrete design advantages (See Section 3).

We implemented TWINE on hardware (ASIC and FPGA) and software
(8-bit microcontroller). We did not take the fixed key setting, hence keys can
be updated. Our hardware implementations suggest that the encryption-only
TWINE can be implemented with about 1, 500 Gate Equivalent (GE), and when
encryption and decryption are unified, it can be implemented within 1, 800 GEs.
We are also trying a serialized implementation and a preliminary result suggests
1, 116 GEs. For software, TWINE is implemented within 0.8 to 1.5 Kbytes ROM.
The speed is relatively fast compared to other lightweight ciphers. Though the
hardware size is not the smallest, we think the performance of TWINE is well-
balanced for both hardware and software.

For security, TWINE employs a technique to enhance the diffusion of GFS,
however, it is definitely important to evaluate the security against attacks that
exploit the diffusion property of generalized Feistel, such as the impossible dif-
ferential attack and the saturation attack. We perform a thorough analysis (for a
new cipher proposal) on TWINE and present the impossible differential attack
against 23-round TWINE-80 and 24-round TWINE-128 as the most powerful
attacks we have found so far. The attack is ad-hoc and fully exploits the key
schedule, which can be of independent interest as an example of highly-optimized
impossible differential attack against GFS-based ciphers.

The organization of the paper is as follows. In Section 2 we describe the
specification of TWINE. Section 3 explains the design rationale for TWINE.
In Section 4 we present the result of security evaluation, and in section 5 we
present the implementation results of both hardware and software. Section 6
concludes the paper.

2 Specification of TWINE

2.1 Notations

The basic mathematical operations we use are as follows. ⊕ denotes bitwise
exclusive-OR. For binary strings, x and y, x∥y denotes the concatenation of x
and y. Let |x| denote the bit length of a binary string x. If |x| = m, x is also
written as x(m) to emphasize its bit length. If |x| = 4c for some positive integer
c, we write x → (x0∥x1∥ . . . ∥xc−1), where |xi| = 4, is the partition operation
into the 4-bit subsequences. The opposite operation, (x0∥x1∥ . . . ∥xc−1) → x, is
similarly defined. The partition operation may be implicit, i.e., we may simply
write xi to denote the i-th 4-bit subsequence for any 4c-bit string x.
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2.2 Data Processing Part (Encryption Process)

TWINE is a 64-bit block cipher with two supported key lengths, 80 and 128 bits.
If the key length is needed to be specified, we write TWINE-80 or TWINE-128
to denote the corresponding version. The global structure of TWINE is a variant
of Type-2 GFS [44] [38] with 16 4-bit sub-blocks. Given a 64-bit plaintext, P(64),
and a round key, RK(32×36), the cipher produces the ciphertext C(64). Round
key RK(32×36) is derived from the secret key, K(n) with n ∈ {80, 128}, using the
key schedule. A round function of TWINE consists of a nonlinear layer using
4-bit S-boxes and a diffusion layer, which permutes the 16 blocks. Unlike Type-2
GFS, the diffusion layer is not a circular shift and is designed to provide a better
diffusion that the circular shift, according the result of [41]. This round function
is iterated for 36 times for both key lengths, where the diffusion layer of the last
round is omitted. The encryption process can be written as Algorithm 2.1.

The S-box, S, is a 4-bit permutation defined as Table 1. The permutation
of block indexes, π : {0, . . . , 15} → {0, . . . , 15}, where j-th sub-block (for j =
0, . . . , 15) is mapped to π[j]-th sub-block, is depicted at Table 2.

The figure of the round function is in Fig. 1.

Algorithm 2.1: TWINE.Enc(P(64), RK(32×36), C(64))

X1
(64) ← P

RK1
(32)∥ . . . ∥RK35

(32) ← RK(32×36)

for i← 1 to 35

do



Xi
0(4)∥Xi

1(4)∥ . . . ∥Xi
14(4)∥Xi

15(4) ← Xi
(64)

RKi
0(4)∥RKi

1(4)∥ . . . ∥RKi
6(4)∥RKi

7(4) ← RKi
(32)

for j ← 0 to 7
do Xi

2j+1 ← S(Xi
2j ⊕RKi

j)⊕Xi
2j+1

for h← 0 to 15
do Xi+1

π[h] ← Xi
h

Xi+1 ← Xi+1
0 ∥Xi+1

1 ∥ . . . ∥Xi+1
14 ∥X

i+1
15

for j ← 0 to 7
do X36

2j+1 ← S(X36
2j ⊕RK36

j )⊕X36
2j+1

C ← X36

Table 1. S-box Mapping in the Hexadecimal Notation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4
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Fig. 1. Round function of TWINE. Data path is 4-bit and each F function is of the
form y = S(x⊕ k) with a 4-bit S-box.

Table 2. Block Shuffle π and its Inverse π−1.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π[j] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1[j] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

2.3 Key Schedule Part

The key schedule produces RK(32×36) from the secret key, K(n), where n ∈
{80, 128}. As well as the data processing part, it is a variant of GFS but with
much sparser nonlinear functions. The pseudocode of key schedule for 80-bit
key is in Algorithm 2.2 and the figure is in Appendix C. For 128-bit key, see
Appendix A. Round constant, CONi

(6) = CONi
H(3)∥CONi

L(3), is defined as 2i in
GF(26) with primitive polynomial z6+z+1. The exact values are listed at Table
3.

Table 3. Round Constants. CONi is the rightmost 6-bit (of 8 bits expressed in hex-
adecimal notation).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CONi 01 02 04 08 10 20 03 06 0C 18 30 23 05 0A 14 28 13 26

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

CONi 0F 1E 3C 3B 35 29 11 22 07 0E 1C 38 33 25 09 12 24 0B
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Algorithm 2.2: TWINE.KeySchedule-80(K(80), RK(32×36))

WK(80) ← K
WK0(4)∥WK1(4)∥ . . . ∥WK18(4)∥WK19(4) ←WK
RK1

0(4) ←WK1, RK1
1(4) ←WK3, RK1

2(4) ←WK4, RK1
3(4) ←WK6

RK1
4(4) ←WK13, RK1

5(4) ←WK14, RK1
6(4) ←WK15, RK1

7(4) ←WK16

RK1
(32) ← RK1

0∥RK1
1∥ . . . ∥RK1

6∥RK1
7

for i← 2 to 36

do



WK1 ←WK1 ⊕ S(WK0)
WK4 ←WK4 ⊕ S(WK16)
WK7 ←WK7 ⊕ 0∥CON i−1

H

WK19 ←WK19 ⊕ 0∥CON i−1
L

tmp0 ←WK0, tmp1 ←WK1, tmp2 ←WK2, tmp3 ←WK3

for j ← 0 to 3

do

{
WKj∗4 ←WKj∗4+4, WKj∗4+1 ←WKj∗4+5

WKj∗4+2 ←WKj∗4+6, WKj∗4+3 ←WKj∗4+7

WK16 ← tmp1, WK17 ← tmp2, WK18 ← tmp3, WK19 ← tmp0

RKi
0 ←WK1, RKi

1 ←WK3, RKi
2 ←WK4, RKi

3 ←WK6

RKi
4 ←WK13, RKi

5 ←WK14, RKi
6 ←WK15, RKi

7 ←WK16

RKi
(32) ← RKi

0(4)∥RKi
1(4)∥ . . . ∥RKi

6(4)∥RKi
7(4)

RK(32×36) ← RK1
(32)∥RK2

(32)∥ . . . ∥RK35
(32)∥RK36

(32)

2.4 Decryption Process

The decryption of TWINE is quite similar to the encryption; we use the same
S-box and key schedule as used in the encryption, with the inverse block shuffle.
See Algorithm 2.3.

Algorithm 2.3: TWINE.Dec(C(64), RK(32×36), P(64))

X36
(64) ← C

RK0
(32)∥ . . . ∥RK35

(32) ← RK(32×36)

for i← 36 to 2

do



Xi
0(4)∥Xi

1(4)∥ . . . ∥Xi
14(4)∥Xi

15(4) ← Xi
(64)

RKi
0(4)∥RKi

1(4)∥ . . . ∥RKi
6(4)∥RKi

7(4) ← RKi
(32)

for j ← 0 to 7
do Xi

2j+1 ← S(Xi
2j ⊕ RKi

j)⊕Xi
2j+1

for h← 0 to 15
do Xi−1

π−1[h]
← Xi

h

Xi−1 ← Xi−1
0 ∥Xi−1

1 ∥ . . . ∥Xi−1
14 ∥X

i−1
15

for j ← 0 to 7
do X1

2j+1 ← S(X1
2j ⊕ RK1

j )⊕X1
2j+1

P ← X1
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3 Design Rationale

3.1 Basic Objective

We focus on the mixed environments of resource-constrained hardware and soft-
ware, and aim at building a block cipher with a balanced performance under
such environments. Specifically, our goals are

1. small footprint in hardware implementation (e.g. under 2,000 GE [23,33]),
2. small ROM/RAM consumption in software implementation,
3. these goals achieved for the unified encryption/decryption functionality.

The importance of the last item is also pointed out by [1].

On LBlock. We remark that LBlock [43], proposed independently of ours, is
quite similar to our proposal. It is a 64-bit block cipher based on the balanced
Feistel whose round function consists of 8 4-bit S-boxes followed by a 4-bit
block-wise permutation (hence no matrix operation as used by SPN). LBlock
also performs 8-bit rotation to the round function’s output. Such a structure
can be transformed into a further generalized Type-2 GFS proposed by [41],
though we do not know whether the authors of LBlock are aware of it. We
investigated LBlock in this respect and found that the LBlock’s diffusion layer
is equivalent to that of the decryption of our proposal. Note that this choice is
quite reasonable from Table 6 of [41], as it satisfies both of the fastest diffusion
and the highest immunities against linear and differential attacks among other
block shuffles.

Nevertheless, there are some important differences between TWINE and
LBlock, as follows;

1. LBlock uses ten distinct S-boxes while ours uses one S-box. The use of sin-
gle S-box rather than multiple ones can contribute to smaller (serialized)
hardware and software implementations.

2. LBlock uses a bit permutation in its key scheduling, while ours is completely
bit permutation-free, including the key schedule. Hence the design of LBlock
does not meet our criteria mentioned at Introduction.

We also would like to point out that the security evaluation of LBlock is in-
sufficient. We already found a saturation attack against 22-round version with-
out considering the key schedule, thus the security margin is smaller than the
claimed by the authors (20-round). Using the techniques presented at Section 4,
we expect further improvements on the attack.

3.2 Parameters and Components

Considering the basic design goals as above, we choose the 64-bit block size with
80 and 128-bit keys, which is compatible to many previous lightweight blockci-
phers. The number of rounds is determined from our security analysis. As far
as we investigated, the most powerful attack against TWINE is a dedicated
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impossible differential attack, which breaks 23-round TWINE-80 and 24-round
TWINE-128. From this, we consider 36-round TWINE-128 has a sufficient
security margin. When keeping the same size of margin for TWINE-80 and
TWINE-128 is our sole goal, the 80-bit key version could reduce the number of
rounds from 36. However, considering the security margin and the implementa-
tion merit (i.e. 36 has many factors, which enables various multiple-round hard-
ware implementations with a small overhead), we employ the 36-round structure
for both key lengths.

Block Shuffle. The block shuffle π comes from a result of FSE ’10 [41]. In [41], it
was reported that by changing the block shuffle different from the ordinal cyclic
shift one can greatly improve the diffusion of Type-2 GFS. Here, goodness-of-
diffusion is measured by the minimum number of rounds that diffuses any input
sub-block difference to all output sub-blocks, called DRmax. Smaller DRmax
means a faster diffusion. DRmax of cyclic shift with k sub-blocks is k, while
there exist shuffles with DRmax = 2 log2 k, called “optimum block shuffle” [41].
Our π is such one2 with k = 16, hence DRmax = 8 while DRmax = 16 for the
cyclic shift. DRmax is connected to the resistance against various attacks. For
example, Type-2 GFS with 16 sub-blocks has 33-round impossible differential
characteristics and 32-round saturation characteristics. However, by using π of
Table 2 they can be reduced to 14 and 15 rounds.

There exist multiple optimum block shuffles [41]. Hence π was chosen con-
sidering other aspects which is not (directly) related to DRmax. In particular,
we focus on the resistance against differential and linear cryptanalysis, i.e., the
number of active S-boxes.

S-box. The 4-bit S-box is chosen to satisfy

1. The maximum differential and linear probabilities are 2−2, which is theoret-
ically the minimum for invertible S-box,

2. The boolean degree is 3,
3. The interpolation polynomial contains many terms and has degree 14.

Following the AES S-box design, we searched S-boxes satisfying the above while
being representable as a composition of Galois field inversion and an affine trans-
formation. More precisely, our S-box is defined as y = S(x) = f((x⊕b)−1), where
a−1 denotes the inverse of a in GF(24) (the zero element is mapped to itself.)
with irreducible polynomial z4 + z + 1, and b = 1 is a constant, and f(·) is an
affine function defined as 

y0

y1

y2

y3

 =


0 0 1 1
1 0 0 1
1 0 0 0
0 1 0 0

 ·


x0

x1

x2

x3

 (1)

for y = f(x) with y = (y0∥y1∥y2∥y3) and x = (x0∥x1∥x2∥x3).
2 More precisely, an isomorphic shuffle in Appendix B (k = 16, No. 10) of [41].
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Key Schedule. The key schedule has many design options. We choose one which
enables (1) on-the-fly operations and (2) produces each round key via sequential
update of a key state, that is, there is no intermediate key. As mentioned, it uses
no bit permutation. As hardware efficiency is not our ultimate goal, the design is
rather conservative compared to the recent hardware-oriented ones [13,34,40], yet
quite simple. For security, we want our key schedule to have sufficient resistance
against slide, meet-in-the-middle, and related-key attacks.

4 Security Evaluation

4.1 Overview

We examined the security of TWINE against various attacks for both 80 and
128-bit keys. Since it is hard to describe all the evaluation results due to the page
limit, we focus on the most critical attacks in our evaluation; the impossible dif-
ferential and saturation attacks. For simplicity we only describe the details of the
attacks against TWINE-80; the results on TWINE-128 will be briefly described
in the summary. The short summary on other attacks, such as differential and
linear attacks, will also be given.

In this section, we use the following notations. S̄c denotes the sequence of
c symbols S, e.g. 0̄3 means (0, 0, 0) and Ū3 means (U,U,U). The F function
in the i-th round is labeled as F i

0, . . . , F
i
15, where F i

0 is the leftmost one. We
let RKi

[j1,...,jh] to denote the vector (RKi
j1 , . . . ,RKi

jh
). Since RKi

j is the j-th 4-
bit subsequence of RKi (for j = 0, 1, . . . , 15), this means F i

j (x) = S(RKi
j ⊕ x).

Xi
[j1,...,jh] is similarly defined.

4.2 Impossible Differential Attack

Generally, impossible differential attack [6] is one of the most powerful attack
against Feistel and GFS-based ciphers, as demonstrated by (e.g.) [15, 32, 42].
We searched impossible differential characteristics (IDCs) using Kim et al.’s
method [24], and found 64 14-round IDCs. We here present a highly-optimized
attack against 23-round TWINE-80. It exploits the key schedule and is based
on the following 14-round IDC (for 4-bit blocks);

(0, α, 0̄14)14r9(0̄8, β, 0̄7), where α ̸= 0 and β ̸= 0. (2)

Our attack uses the above IDC to 5-th to 18-th rounds of TWINE, and tries to
recover the subkeys of the first 4 rounds and last 5 rounds, 144 bits in total. These
subkey bits are uniquely determined via its 80-bit subsequence; see Appendix D.

The details of our attack are as follows.

Data Collection. We call a set of 232 plaintexts a structure if its i-th sub-blocks
are fixed to a constant for all i = 2, 4, 5, 6, 7, 8, 9, 14 ∈ {0, . . . , 15} and the re-
maining 8 sub-blocks take all 232 values. Suppose we have one structure. From
it we extract plaintext pairs having the differential

(α1, α2, 0, α3, 0̄6, α4, α5, α6, α7, 0, α0), (3)
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where αi is a non-zero 4-bit value. For such a plaintext pair, we want to make
sure that the differential of the internal state after the first 4 rounds to match
the left hand side of Eq. (2). For this, the output differentials with respect to
some F functions (in the first 4 rounds) have to be canceled out. For example,
α2 must be the differential of F with input differential α1, as shown by Fig. 2.
Here, we use the following observation;

Proposition 1. Let y = F i
j (x) = S(RKi

j ⊕ x) and y′ = F i
j (x

′). For fixed ∆x =
x⊕ x′ ̸= 0, ∆y = y ⊕ y′ has always 7 possible values, for any i and j. Moreover,
for a fixed ∆x ̸= 0 let τ(∆y) be the function of ∆y which represents the number
of possible RKi

j values. Then τ(∆y) equals 2 for some 6 values of ∆y and 4 for
the remaining one.

Hence we have a set of 7 possible values for α2, which is determined by α1.
Considering this restriction, we can extract 254.56 plaintext pairs from a structure
with its differential being Eq (3).

Key Elimination. After the plaintext pairs have been generated, we encrypt
them and seek the ciphertext pairs with a differential

(0, β1, 0, β2, β3, β4, β0, β5, β6, β7, β8, β9, β10, β11, 0, 0), ∀βi ̸= 0. (4)

For each ciphertext pair with differential Eq. (4), we try to eliminate the
wrong (impossible) candidates for the 80-bit (sub)key vector (K1∥K2∥K3), where

K1 = (RK1
[1,2,3,7],RK23

0 ),K2 = (RK1
[0,5,6],RK2

[2,4,6,7], RK23
[2,4,5]RK22

[1,3,4]),

K3 = (RK22
0,2), (5)

using the plaintext pair of differential Eq. (3) and the ciphertext pair of dif-
ferential Eq. (4). This can be done as follows. First, we guess the 20-bit K1

(which can take all possible values). After K1 is guessed, the number of each
4-bit subkey candidates in K2 is (2 · 6 + 4)/7 ≈ 2.28 on average from Proposi-
tion 1. Moreover, once K1 and K2 are fixed, each 4-bit subkey of K3 will have
(2 · 6 + 4)/15 ≈ 1.07 candidates, as we have no restrictions on the input differ-
ential for F s relating to these subkeys. From this observation, we can expect to
eliminate 220 · (16/7)13 · (16/15)2 ≈ 235.69 candidates from a set of 280 values for
each plaintext-ciphertext pair, i.e. a guess of 80-bit (K1∥K2∥K3) is eliminated
with probability 2−44.31. The detail of the above procedure is depicted at Table
12 in Appendix D.

From this, to determine (K1∥K2∥K3) with probability almost one, we need
N ciphertext pairs, where N satisfies 280(1 − 2−44.31)N ≈ 1. This implies N ≈
250.11. Assuming the ciphertext’s randomness, we can expect a ciphertext pair of
differential Eq (4) with probability (2−4)4 · (2−1)8 = 2−24. This implies that we
basically need 274.11 ciphertext pairs. But in fact we need some more. In the key
elimination we need to compute some other subkeys (64 bits in total), which is
uniquely determined by the key of Eq. (5). These keys contain RK19

4 ,RK21
4 , and

RK23
6 and they can cause a contradiction with other keys. If this event occurs,
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the corresponding plaintext/ciphertext pair turns out to be useless. Considering
the probability of this event we need 210 times more pairs, thus we eventually
need 284.11 ciphertext pairs.

Since one structure enables to produce 254.56 plaintext pairs of the desired
difference, we need to generate 229.55 structures (by using 229.55 distinct con-
stants) and run the above key elimination procedure for all structures.

Details of Key Elimination. In the key elimination we combine several techniques
to reduce the complexity. In particular we use the Difference Table. Its entry is
indexed by (x, x′, y) ∈ ({0, 1}4)3 and the entry is a set K = {k : y = S(k ⊕
x)⊕S(k⊕x′)}. We also use the relationships between subkeys induced from the
key schedule, or we can directly guess the key if input and output pairs of the
corresponding F are fixed (not only their differentials).

Complexity Estimation. For each plaintext-ciphertext pair, the procedure re-
garding K2 and K3 requires the 17 evaluations of F function, shown on the
dotted lines in Fig.s 2 and 3, and F 23

[2,3,4,5,6], total 22 functions. This amounts to
22/(23 · 8) encryptions of 22-round TWINE. Consequently, we can attack 23-
round TWINE-80 with the time complexity 250.11+10 · 220 · 22/(23 · 8) = 277.04

encryptions, and the memory complexity 280/64 = 274 blocks.
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Fig. 2. The First 4 Rounds in the Impossible Differential Attack.

4.3 Saturation Attack

Saturation attack [16] is also a powerful attack against GFS-based ciphers. We
consider 4-bit-wise saturations. The state consists of 24 variables, denoted by S =
(S0, . . . , S15), where Si has the following four status (here X is the plaintext):

Constant (C) : ∀i, j Xi = Xj All (A) : ∀i, j i ̸= j ⇔ Xi ̸= Xj

Balance (B) :
⊕24−1

i Xi = 0 Unknown (U) : Others
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Fig. 3. The Last 5 Rounds in the Impossible Differential Attack.

Let α = (α0, . . . , α15) and β = (β0, . . . , β15), αi, βi ∈ {C,A, B, U}, be the
initial state and the t-round state holding with probability 1. If we have αi = A

and βj ̸= U for some i and j, we call α
tr→β an t-round saturation characteristic

(SC).
TWINE has 15-round SC with input consisting of one C and fifteen As and

output consisting of 4 Bs (the remaining consists of U), for example;

(Ā12, C, Ā3)15r→(Ū3, B, Ū5, B, Ū3, B, U,B), (6)

(Ā6, C, Ā9)15r→(U,B, Ū3, B, U,B, Ū3, B, Ū4). (7)

Suppose we use SC of Eq. (7) to break 22-round TWINE-80. Let S-structure
denote a set of 260 plaintexts induced from Eq. (7), i.e., the input block X6 is
fixed to a constant and the other blocks take all combinations.

Our attack recovers a 72-bit subkey vector

Ktarget = (RK22, RK21
[0,2,3,4,5,6,7],RK20

[6,7], RK16
0 )

based on the fact that (the state of) X15
1 is B with these 15-round SCs. Here,

the state of X15
1 being B implies the coincidence of states between X16

0 and F 16
0 ,

the output of the leftmost F function in the round 16, computed from the S-
structure. From this, we calculate the sums of F 16

0 and X16
0 independently, and

choose a key that makes these values the same as a candidate for the correct
key. The basic procedure for one S-structure is as follows.

1. Encrypt an S-structure and obtain 260 ciphertexts. As our target is the 22-
round version, the ciphertext is written as X22.

2. List all ciphertexts except their rightmost (16-th) block, X22
15 . The result is

denoted by List L1. It is merely a set of 60-bit values and the values with
even appearances need not be stored. We then guess

K1 = (RK22
[0,1,2,3,4,5,6],RK21

[2,3,4,5,7],RK20
6 ,RK17

2 ,RK16
0 )

11



and compute the sum of outputs of F 16
0 (the leftmost F function in the

round 16) using all entries in L1 with each guess for K1
3. We remark that

a pair of an entry of L1 and a guess for K1 uniquely determines the output
of F 16

0 . The key guesses are grouped according to the sum of F 16
0 ’s outputs.

Let G1(s) be the key group with F 16
0 output sum s ∈ {0, 1}4.

3. Count the appearance of 48-bit ciphertext subsequences, X22
[0,2,4,5,6,7,8,9,10,11,14,15],

and list those have odd counts to form the list L2. We then guess

K2 = (RK22
[2,3,4,5,7], RK21

[0,5,6],RK20
7 ,RK18

2 )

and compute the sum of X16
0 using all entries in L2 with each guess for K2.

The key guesses are grouped according to the sum of X16
0 . The key group

with X16
0 sum being s′ ∈ {0, 1}4 is denoted by G2(s′).

4. Extract the all “consistent” combinations from G1(s) and G2(s) for all s ∈
{0, 1}4, and output them as the set of valid key candidates for Ktarget. This
can be done as follows. Let v ∈ G1(0000) and w ∈ G2(0000). We denote the
guess for RKi

j in v and w by RKi
j(v) and RKi

j(w). Both v and w contain
guesses of RK22

[2,3,4,5] and RK21
5 . If the following four equations,

RK22
[2,3,4,5](v) = RK22

[2,3,4,5](w), RK21
5 (v) = RK21

5 (w), (8)

RK21
6 (w) = S(RK21

2 (v)) ⊕ RK18
2 (w), (9)

RK22
7 (w) = S(S(RK20

7 (w)) ⊕ S−1(RK20
6 (v) ⊕ RK17

2 (v))) ⊕ RK21
0 (w) (10)

hold true, a valid key candidate for Ktarget is obtained by combining v and
w. The check is done for all pairs from G1(s)×G2(s), and for all s ∈ {0, 1}4.

Taking Step 2 for example, we explain the detailed procedure. We first guess
RK22

0 and compute X21
1 (= F 22

0 (X22
0 ) = S(RK22

0 ⊕ X22
0 )) using L1 with 264 F

evaluations. Then we substitute X22
[0,1] (8 bits) written in L1 with X21

1 (4 bits)
and obtain a list of 56-bit sequences, and collect the values with odd appearance
to form a new list, called L1,1. Next, we guess RK22

2 and compute X21
5 based

on the guess with 264 F evaluations. We then substitute X22
[4,5] with X21

5 in
L1,1 and obtain the list of 52-bit sequences and collect the values with odd
appearance to form a new list, called List L1,2. The above procedure is repeated
to gradually reduce the list size. Eventually the computation of the sum of F 16

0

outputs requires 273.80 F evaluations (equivalently 266.34 encryptions of 22-round
TWINE). A similar complexity reduction can also be applied to Step 3, however,
the computation of Step 3 is much smaller than that of Step 2 (due to the small
space for the key guess) in any case.

As checks are done w.r.t. 4-bit internal values, the above procedure with one
S-structure rejects a wrong key candidate for Ktarget with probability 1 − 2−4

(i.e. the size of candidates is reduced to 1/16), hence we basically need at least
3 More precisely, RK20

[0,5],RK19
[1,7],RK18

3 are required to compute F 16
0 outputs. Also

RK20
1 and RK19

3 are required to compute X16
0 in Step 3. These RKs can be computed

from K1 or K2. See Appendix E.
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18 S-structures to identify the right key. However, this is impossible as each sub-
block is 4-bit. To elude the problem, we exploit the key schedule; the structure
of the key schedule allows us to derive the 80-bit key with 268 candidates for
72-bit subkey, and an exhaustive search for the remaining 8-bit subkey, and the
final key check, which is trivial.

Summarizing, the attack with an S-structure requires 260 plaintexts to be
encrypted, and 277 (which follows from 266.34 + 276 + ρ, where ρ denotes the
computation of Step 3, which is negligible) encryptions. The memory complexity
is 267 (64-bit) blocks. If we want to further reduce the complexity, using multiple
S-structures (using distinct constants with the same SC) can help. The result
is shown by Table 4. According to our investigation, the attack with 5 or more
structures has higher time complexity than that with 4 structures, hence the
best one is with 4 structures.

Table 4. Complexity of Saturation Attack.

# of Struct.s Data Time (Enc) Memory (Block)

1 260 277(≈ 260 + 266.34 + ρ + 276 + 212) 267

2 261 273(≈ 261 + (266.34 + ρ) · 2 + 272 + 28) 267

3 261.59 268.97(≈ 261.59 + (266.34 + ρ) · 3 + 268 + 24) 267

4 262 268.43(≈ 262 + (266.34 + ρ) · 4 + 264) 267

4.4 Differential / Linear Cryptanalysis

To evaluate the resistance against differential cryptanalysis (DC) [5] and linear
cryptanalysis (LC) [29], we need to know the number of differentially and lin-
early active S-boxes, denoted by ASD and ASL, respectively. We performed a
computer-based search for differential and linear paths, and evaluated ASD and
ASL for each round. As a result, the numbers of ASD and ASL are the same,
as shown by Table 5. Since our S-box has 2−2 maximum differential and linear
probabilities, the maximum differential and linear characteristic probabilities are
both 2−64 for 15 rounds. Examples of 14-round differential (∆) and linear (Γ )
characteristics having the minimum I/O weights are as follows. They involve 30
active S-boxes, and thus the characteristic probability is 2−60.

∆ = (09, 1, 0, 1, 0, 1, 0, 0)14r→(03, 1, 04, 1, 0, 0, 1, 0, 0, 1, 1),

Γ = (06, 1, 1, 03, 1, 0, 0, 1, 1)14r→(09, 1, 03, 1, 0, 1). (11)

Here, 1 denotes an arbitrary non-zero difference (mask) and 0 denotes the zero
difference (mask) for ∆ (Γ ). Compared to the impossible differential attack, we
naturally expect the key recovery attacks exploiting the key schedule with these
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differential/linear characteristics are less powerful, since 14-round impossible dif-
ferential characteristic has much fewer (only 2) weights, and fewer weights imply
the more attackable rounds in the key guessing. We remark that a computer-
based search for the maximum differential probability (rather than the char-
acteristic probability) of GFS was proposed by [30]. However, applying their
algorithm to our 16-block case seems infeasible due to the computational com-
plexity.

Table 5. Number of Differentially and Linearly Active S-boxes.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ASD, ASL 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32

4.5 Key Schedule-based Attacks

Related-Key Differential Attacks. The related-key attack, proposed by Biham
[4], is an attack applicable to the environment where the adversary can somehow
modify the key input. We focus on the typical setting, that is, the adversary is
allowed to insert a key differential. In order to evaluate the resistance of TWINE
against the related-key attack, we implemented the search method proposed by
Biryukov et al. [8], which counts the number of active S-boxes for combined data
processing and key schedule parts. See [8] for the detail of the algorithm. We
(naturally) searched 4-bit truncated differential paths. As S-box has maximum
differential probability being 2−2, we needed 40 (64) active S-boxes for TWINE-
80 (TWINE-128).

Due to the computational constraint the full-search is only feasible for TWINE-
80. As a result, we confirmed that the number of active S-boxes reaches 40 for
the 22-round. Appendix F provides the number of active S-boxes and the corre-
sponding truncated differential paths.

Other Attacks. For the slide attack [7], the key schedule of TWINE inserts
distinct constants for each round. This is a typical way to thwart slide attacks
and hence we consider TWINE is immune to the slide attack.

For Meet-In-The-Middle (MITM) attack, we confirmed that the round keys
for the first 3 (5) rounds contain all key bits for the 80-bit (128-bit) key case.
Thus, we consider it is difficult to mount the basic MITM attack against the full-
round TWINE. Note that the recently-proposed MITM variant, called biclique
attack [11], may work even when all key bits are used in the relatively small
number of rounds. The evaluation of such attack against TWINE is a future
topic.

The result of our security evaluation for TWINE is summarized at Table 6.
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Table 6. Summary of Attacks on TWINE.

Key Attack Rounds
Data Time Memory

(bits) (blocks) (encryption) (blocks)

80 Impossible Diff. 23 261.39 276.88 274

Saturation 22 262 268.43 267

128 Impossible Diff. 24 252.21 2115.10 2118

Saturation 23 262.81 2106.14 2103

5 Implementation

5.1 Hardware

We implemented TWINE on ASIC using a 90nm standard cell library with
logic synthesis done by Synopsys Design Compiler Version D-2010.03-SP1-1.
Following the recent trend in the lightweight implementations [9,13], the figures
are shown for the case when Scan Flip-Flops (FFs) are used. In our library, a
D-FF and 2-to-1 MUX cost 5.5 GE and 2.25 GE, and a Scan FF costs 6.75 GE:
hence this technique saves 1.0 GE per 1-bit storage.

The data path of TWINE-80 encryption circuit is in Fig. 4, and the imple-
mentation result is shown by Table 7. We also show the detail of TWINE-80
encryption implementation in Table 8. The figures must be taken with cares,
because they are related to the type of memory unit (FF), technology, library,
etc, as pointed out by [13]. Even single XOR gate has several grades, from fast-
but-large and slow-but-small. As suggested by [13], we list Gates/Memory Bit
in the table, which denotes the size (in Gate Equivalent (GE)) of 1-bit memory
device used for the key and states.

We did not perform a thorough logic minimization of the S-box circuit, which
currently costs 30 GEs. The S-box logic minimization can further reduce the size.

We also tried a serialized implementation. Though it is not yet finished,
the preliminary result indicates that encryption-only TWINE-80 can be imple-
mented 1, 116 GEs. The details of our serialized implementation will be given in
a forthcoming paper.

5.2 Software

To evaluate the performance on embedded software, we implement TWINE
on Atmel AVR 8-bit Micro-controller. The target device is ATmega163, which
has 16K bytes Flash, 512 bytes EEPROM and 1024 bytes SRAM. We imple-
mented the four versions: speed-first, ROM-first (minimizing the consumption),
and RAM-first, and the double-block implementation, where two message blocks
are processed in parallel. Such an implementation works for parellelizable modes
of operations, e.g., the counter mode and PMAC. All implementations include
the precomputation of round keys, i.e. they do not use an on-the-fly key schedule.
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Table 7. ASIC Implementation Results. For some implementations, the figures of Throughput and
Cycles/Block is an estimated value.

Algorithm Function Block size Key size Cycles/ Throughput Area Gates / Type

(bit) (bit) block (Kbps@100KHz) (GE†) Memory bit

TWINE Enc 64 80 36 178 1503 6.75 round

TWINE Enc+Dec 64 80 36 178 1799 6.75 round

TWINE Enc 64 128 36 178 1866 6.75 round

TWINE Enc+Dec 64 128 36 178 2285 6.75 round

TWINE Enc 64 80 540 11.8 1116 6.75 serial

PRESENT [36] Enc 64 80 547 11.4 1000 n/a serial

PRESENT [9] Enc 64 80 32 200 1570 6 round

AES [31] Enc 128 128 226 57 2400 6 serial

mCRYPTON [27] Enc 64 64 13 492.3 2420 5 round

SEA [28] Enc+Dec 96 96 93 103 3758 n/a round

HIGHT [21] Enc+Dec 64 128 34 188.25 3048 n/a round

KLEIN [19] Enc 64 80 17 376.4 2629 n/a round

KLEIN [19] Enc 64 80 271 23.6 1478 n/a serial

DES [26] Enc 64 56 144 44.4 2309 12.19 serial

DESL [26] Enc 64 56 144 44.4 1848 12.19 serial

KATAN [13] Enc 64 80 254 25.1 1054 6.25 serial

Piccolo [40] Enc 64 80 27 237 1496¶ 6.25 round

Piccolo [40] Enc+Dec 64 80 27 237 1634¶ 6.25 round

Piccolo [40] Enc 64 80 432 14.8 1043¶ 6.25 serial

Piccolo [40] Enc+Dec 64 80 432 14.8 1103¶ 6.25 serial

LED [18] Enc 64 80 1872 3.4 1040 6/4.67⋄ serial

PRINTcipher [25] Enc 48 80 48 12.5 503⋆ n/a round

† Gate Equivalent : cell area/2-input NAND gate size (2.82).
¶ Includes a key register that costs 360 GEs; Piccolo can be implemented without a key register if

key signal holds while encryption.
⋄ Mixed usage of two memory units.
⋆ Hardwired key.

Table 8. TWINE-80 Encryption Hardware Implementation.

Data Processing Part (GE) Key Scheduling Part (GE)

Data Register 432 Key Register 540

S-box 240 round const comp. 2

Round Key XOR 64 round const XOR 12

S-box out XOR 64 S-box 60

S-box out XOR 16

RC register 33

State register 6

Others/Control 34

Total 1503
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Fig. 4. Data path of TWINE-80 encryption, when Scan FF is not used (i.e. the case
with MUX and D-FF). The bit boundary [a] indicates certain 32 bits of 80-bit key
state specified from the key schedule.

In the speed-first implementation, two rounds are processed in one loop.
This removes the block shuffle between the first and second rounds. A further
speeding up is possible if more rounds are contained in one loop at the cost of
increased memory. Our program keeps all 4-bit blocks in the distinct registers.
RAM load instruction (LD) is faster than ROM load instruction (LPM), hence
the S-box and the constants are stored at RAM. The data arrangement is care-
fully considered to avoid carry in the address computation. The double-block
implementation stores the S-boxes in ROM.

Our result is in Table. 9, and a comparison is in Table 10. In Table 10 we
list the (scaled) throughput/code ratio for a performance measure (See Table
10 for the formula), following [35]. AES’s performance is still quite impressive,
however, one can also observe a good performance of TWINE.

One might be interested in the performance of TWINE under 32/64-bit
CPU. We are currently working on this, in particular using the vector permuta-
tion instructions, which was shown to be very powerful for AES [20].

Table 9. Software Implementation of TWINE on ATmega163.

Target
Key schedule Encryption Decryption ROM RAM

(cycles) (cycles/block) (cycles/block) (bytes) (bytes)

Speed-first 2,170 2,165 2,166 1,304 414

ROM-first 12,022 18,794 18,689 728 335

RAM-first 12,058 18,794 18,688 792 191

Double-block 1,887 1,301 1,302 2,294 386
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Table 10. Comparison of Software Implementation on AVR.

Algorithm
Key Block Language ROM RAM Enc Dec ETput DTput

(bits) (bits) (bytes) (bytes) (cyc/byte) (cyc/byte) /Code† /Code‡

TWINE 80 64 asm 1,304 414 271 271 2.14 2.14

PRESENT [33] 80 64 asm 2,398 528 1,199 1,228 0.28 0.28

PRESENT [17] 80 64 N/A 936 0 1,340 1,405 0.80 0.76

DES [17] 56 64 N/A 4,314 0 1,079 1,019 0.21 0.22

DESXL [17] 184 64 N/A 3,192 0 1,066 995 0.29 0.31

HIGHT [17] 128 64 N/A 5,672 0 371 371 0.48 0.48

IDEA [17] 128 64 N/A 596 0 338 1,924 4.97 0.87

TEA [17] 128 64 N/A 1,140 0 784 784 1.11 1.11

SEA [17] 96 96 N/A 2,132 0 805 805 0.58 0.58

AES [12] 128 128 asm 1,912 432 125 181 3.42 2.35

† Encryption Throughput per Code: (1/Enc)/(ROM + RAM) (scaled by 106)
‡ Decryption Throughput per Code: (1/Dec)/(ROM + RAM) (scaled by 106)

6 Conclusions

We have presented a lightweight block cipher TWINE, which has 64-bit block
and 80 or 128-bit key. It is primary designed to fit extremely-small hardware,
yet provides a notable performance under embedded software. This characteris-
tic mainly originates from the Type-2 generalized Feistel with a highly-diffusive
block shuffle. We performed a thorough security analysis, in particular for the
impossible differential and saturation attacks. Although the result implies the
sufficient security of full-round TWINE, its security naturally needs to be stud-
ied further.
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A Key Schedule for 128-bit Key

Algorithm A.1: TWINE.KeySchedule-128(K(128), RK(32×36))

WK(128) ← K
WK0(16)∥WK1(16)∥ . . . ∥WK6(16)∥WK7(16) ←WK
RK1

0(4) ←WK2, RK1
1(4) ←WK3, RK1

2(4) ←WK12, RK1
3(4) ←WK15

RK1
4(4) ←WK17, RK1

5(4) ←WK18, RK1
6(4) ←WK28, RK1

7(4) ←WK31

RK1
(32) ← RK1

0∥RK1
1∥ . . . ∥RK1

6∥RK1
7

for i← 2 to 36

do



WK1 ←WK1 ⊕ S(WK0)
WK4 ←WK4 ⊕ S(WK16)
WK23 ←WK23 ⊕ S(WK30)
WK7 ←WK7 ⊕ 0∥CON i−1

H

WK19 ←WK19 ⊕ 0∥CON i−1
L

tmp0 ←WK0, tmp1 ←WK1, tmp2 ←WK2, tmp3 ←WK3

for j ← 0 to 6

do

{
WKj∗4 ←WKj∗4+4, WKj∗4+1 ←WKj∗4+5

WKj∗4+2 ←WKj∗4+6, WKj∗4+3 ←WKj∗4+7

WK28 ← tmp1, WK29 ← tmp2, WK30 ← tmp3, WK31 ← tmp0

RKi
0 ←WK2, RKi

1 ←WK3, RKi
2 ←WK12, RKi

3 ←WK15

RKi
4 ←WK17, RKi

5 ←WK18, RKi
6 ←WK28, RKi

7 ←WK31

RKi
(32) ← RKi

0(4)∥RKi
1(4)∥ . . . ∥RKi

6(4)∥RKi
7(4)

RK(32×36) ← RK1
(32)∥RK2

(32)∥ . . . ∥RK35
(32)∥RK36

(32)

B Test Vectors

Table 11. Test Vectors in the Hexadecimal Notation.

key length 80-bit 128-bit

key 00112233 44556677 8899 00112233 44556677 8899AABB CCDDEEFF

plaintext 01234567 89ABCDEF 01234567 89ABCDEF

ciphertext 7C1F0F80 B1DF9C28 979FF9B3 79B5A9B8

C 80-bit Key Schedule

Figure 5 depicts the key schedule for TWINE-80.
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Fig. 5. 80-bit Key Schedule.

D Supplementary Information for Impossible Differential
Cryptanalysis

The following is the subkey relationships used for the impossible differential
cryptanalysis.

RK3
3 = RK1

5

RK3
5 = RK1

1

RK4
1 = RK1

6

RK21
0 = S[S[S[RK19

4 ]⊕ RK1
3]⊕ RK21

4 ]⊕ RK2
7

RK21
5 = S−1[S−1[RK21

1 ⊕ S[RK20
3 ]⊕ RK1

1]⊕ RK1
6]

RK22
0 = RK19

4

RK22
2 = S[RK20

6 ]⊕ S[RK2
7]⊕ RK2

2

RK22
4 = S[S[S[RK20

3 ]⊕ RK1
1]⊕ RK22

3 ]⊕ S[S[S[S[RK20
6 ]⊕ S[RK2

7]⊕ RK2
2]⊕ S−1[RK22

1

⊕ S−1[S−1[S−1[RK21
1 ⊕ S[RK20

3 ]⊕ RK1
1]⊕ RK1

6]⊕ S[RK21
4 ]⊕ RK1

5]]]⊕ RK21
7 ]⊕ RK2

4

RK22
5 = S−1[S−1[RK22

1 ⊕ S−1[S−1[S−1[RK21
1 ⊕ S[RK20

3 ]⊕ RK1
1]⊕ RK1

6]⊕ S[RK21
4 ]⊕ RK1

5]]

⊕ RK2
6]

RK22
6 = S[S[RK20

6 ]⊕ S[RK2
7]⊕ RK2

2]⊕ S−1[RK22
1 ⊕ S−1[S−1[S−1[RK21

1 ⊕ S[RK20
3 ]⊕ RK1

1]

⊕ RK1
6]⊕ S[RK21

4 ]⊕ RK1
5]]

RK23
0 = S[S[S[RK21

4 ]⊕ RK1
5]⊕ RK20

3 ]⊕ S−1[S[S[S[RK20
6 ]⊕ S[RK2

7]⊕ RK2
2]⊕ S−1[RK22

1

⊕ S−1[S−1[S−1[RK21
1 ⊕ S[RK20

3 ]⊕ RK1
1]⊕ RK1

6]⊕ S[RK21
4 ]⊕ RK1

5]]]⊕ RK21
7 ⊕ RK1

7]

RK23
1 = RK20

6

RK23
3 = S−1[S−1[RK21

1 ⊕ S[RK20
3 ]⊕ RK1

1]⊕ RK1
6]

RK23
4 = RK20

3

RK23
5 = RK21

1

RK23
6 = S[RK23

2 ]⊕ S[RK21
1 ]⊕ S−1[RK2

7 ⊕ RK1
0]

RK23
7 = S[S[RK21

7 ]⊕ S[RK22
1 ]⊕ S[RK1

7]⊕ RK1
2]⊕ RK19

4
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Table 12. Procedure of Round Key Determination.

Step target key method

1 RK1
0, RK1

5, RK1
6 diff-table

2 RK3
4, RK4

1 key rel.

Input of F 3
3 and output of F 2

4 are decided from diff-table.

Input of F 4
1 is decided from diff-table.

3 RK1
3 guess

4 RK2
4 IO value

5 RK1
7 guess Input of F 2

7 is decided.

6 RK2
7 diff-table

7 RK1
1 guess Input of F 2

2 is decided.

8 RK3
5 key rel. Output of F 2

6 is decided.

9 RK2
2 diff-table

10 RK1
2 guess

11 RK2
6 IO value

12 RK23
2 , RK23

4 , RK23
5 diff-table IO value of F 22

0 is decided.

13 RK20
3 , RK21

1 key rel. Input of F 20
3 is decided from diff-table.

14 RK21
5 , RK23

3 , RK23
6 key rel.

Input of F 22
2 is decided. IO value of F 22

0 is decided.

Input of F 21
5 is decided, then output of F 22

4 is decided.

15 RK22
2 diff-table

16 RK20
6 key rel.

17 RK23
1 key rel. IO value of F 22

3 is decided.

18 RK22
3 diff-table

19 RK22
0 IO value

20 RK19
4 key rel.

21 RK22
4 IO value

22 RK23
0 guess IO value of F 22

1 is decided.

23 RK22
1 diff-table

24 RK21
4 , RK21

7 key rel.

25 RK22
5 , RK22

6 , RK23
7 key rel.
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E Subkey Relationships used for Saturation Attack

The following is the subkey relationships used for the saturation attack.

RK21
4 = RK18

3

RK21
5 = RK19

1

RK21
6 = S[RK21

2 ] ⊕ RK18
2

RK22
2 = RK19

7

RK22
3 = RK20

5

RK22
4 = RK19

3

RK22
5 = RK20

1

RK22
6 = S−1[RK21

7 ⊕ RK20
0 ]

RK22
7 = S[S[RK20

7 ] ⊕ S−1[RK20
6 ⊕ RK17

2 ]] ⊕ RK21
0

F Related-key Truncated Differential and Its Active
S-box Numbers

Table 13 shows the number of active S-boxes using related-key differential, where
∆KS, ∆RK, ∆X and AS denote key state difference, subkey difference, data
difference, and the number of active S-boxes.

Table 13. Truncated Differential and Its Active S-box Numbers.

Round ∆KS ∆RK ∆X AS Round ∆KS ∆RK ∆X AS

1 4D010 A2 A255 0 12 60402 80 A0E2 22

2 D8108 E1 6931 6 13 0402C 05 A630 27

3 010C3 08 9896 8 14 C02C0 88 8D39 30

4 10C30 46 4462 9 15 02C01 10 5A2E 33

5 0C302 20 2288 10 16 2C010 22 62C3 35

6 C3020 94 9411 11 17 C0104 80 8191 38

7 30201 40 0968 14 18 01041 08 0824 38

8 02016 12 1306 15 19 10410 42 4202 39

9 20160 0C 4545 19 20 04102 00 0081 39

10 01604 00 108C 20 21 41020 84 8100 41

11 16040 58 D840 21 22 10208 41 4124 41
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