Network Working Group INTERNET-DRAFT

Intended Status: Standard Track Expires: December 26, 2011

B. Han H. Lee H. Jeong Y. Won KISA June 24, 2011

The HIGHT Encryption Algorithm draft-kisa-hight-00

Abstract

This document describes the HIGHT(HIGH security and light weigHT) encryption algorithm, which is suitable for low-resource device. HIGHT is a 64-bit block cipher with 128-bit keys. The algorithm consists of round functions, key schedule, encryption, and decryption.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

Copyright and License Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents

(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

$\underline{1}$ Introduction	
$\underline{1.1}$. HIGHT overview	
2. Notation and Terminology	
3. The HIGHT algorithm	4
3.1. Round functions	4
3.2. Key schedule	4
3.3. HIGHT encryption	5
3.4. HIGHT Decryption	5
3.5. HIGHT Object Identifiers	7
4. Security Considerations	7
5. Test Vectors	8
6. References	10
6.1. Normative References	10
Authors' Addresses	10

1 Introduction

1.1. HIGHT overview

HIGHT is a 64-bit symmetric key light-weight block cipher suitable for low-resource device. HIGHT stands for 'HIGh security and light weigHT' and is developed by Korea 2005. HIGHT is a ISO/IEC international standard block cipher algorithm included in ISO/IEC 18033-3:2010 [ISO-HIGHT]. It has simple structure with use of basic arithmetic operation - XOR, addition/subtraction in modular 2**8, and circular shift rotation, and also without S-Box.

The features of HIGHT are outlined as follows:

- 64-bit input/output data block size
- 128-bit key length
- 32-round with XOR, modular addition, and shift rotation
- No S-Box
- Designed for low-resource device (data storage, power, etc.)

2. Notation and Terminology

The following notation is used in the description of HIGHT encryption algorithm:

[^] bitwise XOR addition in modular 2**8 [+] [-] subtraction in modular 2**8 Π concatenation left circular shift rotation by n-bit in 8-bit value <<<n Р plaintext ciphertext С master key K WK whitening key SK subkey round function 0 F0 F1 round function 1 i-th byte of X Χi i-th byte of \boldsymbol{X} in round j Xj,i di intermediate status value in subkey scheduling

3. The HIGHT algorithm

3.1. Round functions

The HIGHT algorithm uses two round functions, namely, F0 and F1 which are now defined.

a) Round function 0 (F0) The F0 function is used for encryption and decryption with 8-bit input. The function F0 is defined as follows:

$$F0(x) = (x <<<1) [^] (x <<<2) [^] (x <<<7)$$

b) Round function 1 (F1) The F1 function is used for encryption and decryption with 8-bit input. The function F1 is defined as follows:

$$F1(x) = (x <<<3) [^] (x <<<4) [^] (x <<<6)$$

3.2. Key schedule

The key schedule for HIGHT describes the procedure to make whitening key bytes WKi and 128 subkey bytes SKi from a 128-bit master key K = K15 || K14 || ... || K0, as shown below.

a) The generation of whitening keys is defined as follows.

for
$$i = 0, 1, 2, 3$$
:
 $WKi = K(i+12)$
for $i = 4, 5, 6, 7$:
 $WKi = K(i-4)$

- b) The 128 subkeys are used for encryption and decryption, 4 subkeys per round. The generation of subkeys is defined as follows.
 - (1) s0 = 0, s1 = 1, s2 = 0, s3 = 1, s4 = 1, s5 = 0, s6 = 1d0 = s6 || s5 || s4 || s3 || s2 || s1 || s0
 - (2) for i = 1 to 127: $s(i+6) = s(i+2) \lceil \wedge \rceil s(i-1)$ di = s(i+6)||s(i+5)||s(i+4)||s(i+3)||s(i+2)||s(i+1)||si
 - (3) for i = 0 to 7: for j = 0 to 7: $SK(16*i+j) = K(j-i \mod 8) [+] d(16*i+j)$ for j = 0 to 7: $SK(16*i+j+8) = K((j-i \mod 8)+8)$ [+] d(16*i+j+8)

3.3. HIGHT encryption

The encryption operation is as shown in Figure 1. The transformation of a 64-bit block P into a 64-bit block C is defined as follows

```
(1) P = P7 || P6 || P5 || P4 || P3 || P2 || P1 || P0
(2) X0,0 = P0 [+] WK0,
                                    X0,1 = P1,
    X0,2 = P2 [^] WK1,
                               X0,3 = P3,
X0,5 = P5,
    X0,4 = P4 [+] WK2,
                                  X0,7 = P7.
    X0,6 = P6 [^] WK3,
(3) for i = 0 to 30:
      X(i+1), 0 = Xi, 7 [^] (FO(Xi, 6)[+]SK(4*i+3)), X(i+1), 1 = Xi, 0,
      X(i+1),2 = Xi,1 [+] (F1(Xi,0)[^]SK(4*i)), X(i+1),3 = Xi,2,
      X(i+1), 4 = Xi, 3 [^] (F0(Xi, 2)[+]SK(4*i+1)), X(i+1), 5 = Xi, 4,
      X(i+1), 6 = Xi, 5 [+] (F1(Xi, 4)[^]SK(4*i+2)), X(i+1), 7 = Xi, 6.
    for i = 31:
      X(i+1),0 = Xi,0, X(i+1),1 = Xi,1 [+] (F1(Xi,0)[^]SK124), X(i+1),2 = Xi,2, X(i+1),3 = Xi,3 [^] (F0(Xi,2)[+]SK125), X(i+1),4 = Xi,4, X(i+1),5 = Xi,5 [+] (F1(Xi,4)[^]SK126), X(i+1),6 = Xi,6, X(i+1),7 = Xi,7 [^] (F0(Xi,6)[+]SK127).
(4) C0 = X32,0 [+] WK4,
                                   C1 = X32, 1,
    (5) C = C7 || C6 || C5 || C4 || C3 || C2 || C1 || C0
```

3.4. HIGHT Decryption

The decryption operation is identical in operation to encryption apart from the following two modifications.

- (1) All [+] operations are replaced by [-] operations except for the [+] operations connecting SKi and outputs of F0.
- (2) The order in which the keys WKi and SKi are applied is reversed.

Figure 1. Encryption procedure of HIGHT

3.5. HIGHT Object Identifiers

For those who may be using HIGHT in algorithm negotiation within a protocol, or in any other context that may require the use of Object Identifiers (OIDs), the following OIDs have been defined.

```
algorithm OBJECT IDENTIFIER ::= { iso(1) member-body(2) korea(410)
          kisa(200004) algorithm(1) }
id-hight OBJECT IDENTIFIER ::= { algorithm hight(40) }
id-hightECB OBJECT IDENTIFIER ::= { algorithm hightECB(41) }
id-hightCBC OBJECT IDENTIFIER ::= { algorithm hightCBC(42) }
id-hightCFB OBJECT IDENTIFIER ::= { algorithm hightCFB(43) }
id-hightOFB OBJECT IDENTIFIER ::= { algorithm hightOFB(44) }
id-hightCTR OBJECT IDENTIFIER ::= { algorithm hightCTR(45) }
```

The id-hightECB, id-hightCBC, id-hightCFB, id-hightOFB, and idhightCTR OIDs are used when Electronic CodeBook (ECB) mode, Cipher Block Chaining (CBC) mode, Cipher Feed-Back (CFB) mode, Output Feed-Back (OFB) mode, and Counter (CTR) mode of operation based on the HIGHT block cipher is provided respectively.

4. Security Considerations

No security problem has been found on HIGHT.

<u>5</u>. Test Vectors

5.1. Test vectors 1

Key:
00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
Plaintext:
00 00 00 00 00 00 00 00
Ciphertext:
00 f4 18 ae d9 4f 03 f2

Sub Key	Value	Sub Key	Value
SK3 SK2 SK1 SK0	= e7135b59,	 SK67 SK66 SK65 SK64	= cfa7c7f6
SK7 SK6 SK5 SK4	= c99cb0c8,	SK71 SK70 SK69 SK68	= 48555f62
SK11 SK10 SK9 SK8	= 906d96d7,	SK75 SK74 SK73 SK72	= 1f50a1b1
SK15 SK14 SK13 SK12	= 2c6a5599,	SK79 SK78 SK77 SK76	= a5986d86
SK19 SK18 SK17 SK16	= 27032ade,	SK83 SK82 SK81 SK80	= 0706f33c
SK23 SK22 SK21 SK20	= b5e32d31,	SK87 SK86 SK85 SK84	= fb2b7aff
SK27 SK26 SK25 SK24	= ced9de4e,	SK91 SK90 SK89 SK88	= 7a755a93
SK31 SK30 SK29 SK28	= 48919180,	SK95 SK94 SK93 SK92	= 7bb39134
SK35 SK34 SK33 SK32	= f915b5f4,	SK99 SK98 SK97 SK96	= bcdf15f0
SK39 SK38 SK37 SK36	= fadc0ee2,	SK103 SK102 SK101 SK100	= ef018ca2
SK43 SK42 SK41 SK40	= bba15439,	SK107 SK106 SK105 SK104	= 2a436495
SK47 SK46 SK45 SK44	= 9fadb9bf,	SK111 SK110 SK109 SK108	= ae882255
SK51 SK50 SK49 SK48	= 16b7f8e8,	SK115 SK114 SK113 SK112	= c7e50f52
SK55 SK54 SK53 SK52	= e41e0239,	SK119 SK118 SK117 SK116	= 67d9bcf0
SK59 SK58 SK57 SK56	= d9451b36,	SK123 SK122 SK121 SK120	= 61a18fda
SK63 SK62 SK61 SK60	= a9b0ad97,	SK127 SK126 SK125 SK124	= d1357c79
=======================================			========

Round	Value	Round	Value
Initial	0000001100220033	 Round 17	2c93a90ddd0283ae
Round 1	00ce1138223f33e7	Round 18	93570db102d9aec4
Round 2	cee138ef3fa3e78a	Round 19	57b7b1dbd998c4e4
Round 3	e14fef91a3708a8a	Round 20	b7bedb55989ae458
Round 4	4f8a91cd70518ad1	Round 21	be87559d9a515868
Round 5	8a53cd0951c3d1ee	Round 22	87ce9d5351786873
Round 6	534609c7c3e4ee7d	Round 23	ceab53d6784b73bc
Round 7	4673c7c5e41b7dd7	Round 24	ab30d6d74ba8bc69
Round 8	7359c58c1b33d79c	Round 25	30bfd7f7a83369df
Round 9	595f8cf333d59c07	Round 26	bf13f71733bfdf7d
Round 10	5f0cf317d507073f	Round 27	134617f1bfd57db2
Round 11	0ca0173007033fb6	Round 28	467bf187d5c4b277
Round 12	a03a3043030bb63e	Round 29	7b3187d2c4f5772b
Round 13	3a7943b40b2b3e37	Round 30	315dd246f5482bde
Round 14	7920b47a2b7c37b5	Round 31	5d3846d148a1def3
Round 15	20637a797ce4b5d0	Round 32	003818d1d9a103f3
Round 16	632c79a9e4ddd083	Final	00f418aed94f03f2
========	:===========	========	=======================================

5.2. Test vectors 2

Key: ff ee dd cc bb aa 99 88 77 66 55 44 33 22 11 00 Plaintext: 00 11 22 33 44 55 66 77 Ciphertext: 23 ce 9f 72 e5 43 e6 d8

Sub Key	Value	Sub Key	Value
SK3 SK2 SK1 SK0 SK7 SK6 SK5 SK4 SK11 SK10 SK9 SK8 SK11 SK10 SK13 SK12 SK19 SK18 SK17 SK16 SK23 SK22 SK21 SK20 SK27 SK26 SK25 SK24 SK31 SK30 SK29 SK28 SK35 SK34 SK33 SK32 SK39 SK38 SK37 SK36 SK43 SK42 SK41 SK40	= 4e587e5a, = b8695b51, = 07c2c9e8, = 2b471032, = 6c262bcd, = 828eb698, = 230cef4d, = 254c2af7, = 1c16a4c1, = a5657527, = eeb25316,	SK67 SK66 SK65 SK64 SK71 SK70 SK69 SK68 SK75 SK74 SK73 SK72 SK79 SK78 SK77 SK76 SK83 SK82 SK81 SK80	= be74727f = af9a8263 = 1e2d5c4a = 1ceda097 = d4b17ca3 = 404e7bee = 5730f30a = d0e6a233 = 67687c35 = 12027b6f = e5dcdbea
SK51 SK50 SK49 SK48 SK55 SK54 SK53 SK52	= 17a6c593, = 6d85475c,	SK115 SK114 SK113 SK112 SK119 SK118 SK117 SK116	= 504c5475 = 68c8899b
		SK123 SK122 SK121 SK120 SK127 SK126 SK125 SK124	

Round		Value	Round	Value
Initia	 1	 00ee222144886643	 Round 17	db63ca6b6e9dfaaf
Round	1	ee2d21b1880a435f	Round 18	63776b6b9d09af72
Round	2	2db4b11c0acc5fde	Round 19	77856b93091172c5
Round	3	b4951c9fcca3dec5	Round 20	851793871106c58c
Round	4	95c19fe4a30fc556	Round 21	17a7878206f18c48
Round	5	c115e4730f545645	Round 22	a7598251f1c64855
Round	6	15e27386540d45b7	Round 23	597d5119c6e85575
Round	7	e26486c30dabb777	Round 24	7d4a196ee8e775d8
Round	8	6424c35bab9d7772	Round 25	4a7f6ef7e7bdd882
Round	9	24725b8c9d607282	Round 26	7fadf729bdcb8284
Round	10	72458c7b602d829d	Round 27	ad442985cb29845f
Round	11	458c7bab2dc69d59	Round 28	44b58548296e5f31
Round	12	8cc6ab08c6ba5982	Round 29	b51d488f6e0231f3
Round	13	c60f0841ba688280	Round 30	1df78ff802f8f39d
Round	14	0fd3413668f280d4	Round 31	f7fdf850f8529dd8
Round	15	d35c3627f2afd4e4	Round 32	23fd9f50e552e6d8
Round	16	5cdb27caaf6ee4fa	Final	23ce9f72e543e6d8

6. References

6.1. Normative References

[ISO-HIGHT] ISO/IEC, "Information technology - Security techniques -Encryption - Part 3: Block ciphers", ISO/IEC 18033-3, December 2010.

Authors' Addresses

Byoungjin Han Korea Internet & Security Agency IT Venture Tower, Jungdaero 135, Songpa-gu, Seoul, Korea 138-950 Email: labon58@gmail.com, bjhan@kisa.or.kr

Hwanjin Lee Korea Internet & Security Agency IT Venture Tower, Jungdaero 135, Songpa-gu, Seoul, Korea 138-950 Email: lhj79@kisa.or.kr

Hyuncheol Jeong Korea Internet & Security Agency IT Venture Tower, Jungdaero 135, Songpa-gu, Seoul, Korea 138-950 Email: hcjung@kisa.or.kr

Yoojae Won Korea Internet & Security Agency IT Venture Tower, Jungdaero 135, Songpa-gu, Seoul, Korea 138-950 Email: yjwon@kisa.or.kr