
Bash-f: another LRX sponge function

S. Agievich, V. Marchuk, A. Maslau, V. Semenov

Research Institute for Applied Problems of Mathematics and Informatics

Belarusian State University

Abstract. We present the Bash family of hashing algorithms based on the sponge paradigm.

A core element of this family is the Bash-f sponge function which refers to the LRX (Logical-

Rotation-Xor) class of symmetric cryptography schemes. We describe the components of

Bash-f: a nonlinear mapping, linear diffusion mappings, a permutation of words of a hash

state. For each component, we establish reasonable quality criteria as detailed as possible to

make the choice of the component maximally objective and transparent.

Keywords: hash algorithm, sponge construction, LRX, S-box, bitslice technique.

1 Introduction

Bash =
B

6 hash is a family of hashing algorithms that are being standardized in Belarus. The

forthcoming specification STB 34.101.77 will continue the series of cryptography standards of

our country [5].

The Bash algorithms are based on the sponge construction introduced by G. Bertoni, J. Dae-

men, M. Peeters, and G. Van Assche in [3] and then studied in details in [2]. The base compo-

nent of Bash is a step (or sponge) function named Bash-f. This function updates a hash state

using a current block of input data. It uses bitwise logical operations NOT (¬), OR (∨), AND

(∧) on 64-bit words, rotations and XORs (⊕) of these words. Therefore, Bash-f refers to the

LRX (Logical-Rotation-Xor) class of symmetric cryptographic schemes.

The chosen platform “sponge + LRX” was first used in the Keccak (SHA-3) family of

hashing algorithms. Considering Keccak is smart, effective and sound, we nevertheless decided

to design our own hash family. By our estimates, Bash is competitive to Keccak in performance

and security guarantees expressed in terms of the number of active S-boxes.

The Bash algorithms differ by a security level l ∈ {16, 32, 48, . . . , 256}. The algorithm of

level l processes data by blocks of 1536− 4l bits and returns a hash value of length 2l.

In Bash the sponge scheme is instantiated in the following manner:

1) the hash state has length 1536;

2) the initial state contains the encoding of l;

3) data blocks are processed in the so-called overwrite mode (instead of the usual xor mode

as in Keccak);

4) the sponge-compliant padding rule {0, 1}∗ 3 X 7→ X ‖ 010t is used (t is the minimal

non-negative integer such that |X|+ t+ 2 is a multiple of 1536− 4l).

1

These settings conform with [2]. Here, as usual, 0t is the word of t zeros, ‖ denotes concatena-

tion, and |X| is the length of X.

To complete the instantiation of the sponge scheme, it is sufficient to define Bash-f, that

is, a bijection over {0, 1}1536. We will specify and discuss it later in this paper. Section 2

outlines Bash-f in general, Sections 3 — 5 describe its components in details. We are planning

to present security and performance estimates of Bash-f in a continuation of this paper.

We choose the components of our sponge function according to a principle, which is often

called rigidity. This principle can be formulated as follows: With all the richness of choice there

is no alternative. We subsequently exclude various configurations of the target components

using reasonable quality criteria. As a result we keep only a few equivalent configurations and

finally pick the first one of them. Sections 3 — 5 are organized in the same way: we specify

quality criteria and describe the configurations that satisfy them.

2 The Bash-f sponge function

A hash state S ∈ {0, 1}1536 is divided into 24 words of length 64:

S = S0 ‖ S1 ‖ . . . ‖ S23.

The words are arranged into the 3 × 8 matrix (see Fig. 1). The columns (Sv, Sv+8, Sv+16),

v = 0, 1, . . . , 7, of this matrix are called vertical planes, and the rows (S8i, S8i+1, . . . , S8i+7),

i = 0, 1, 2, are called horizontal. Each vertical plane includes 64 vertical bit triples.

Figure 1: A hash state

In Bash the following conventions concerning 64-bit words are used. The lowest octet of a

word is the first one (the little-endian rules), but octets have, as usual, the highest bit first.

Before the shift, a word is loaded into a hypothetical register. The first (last) octet of the word

is loaded into the lowest (highest) octet of the register. After the shift, octets of the register

are unloaded in the same order. The cyclic shift towards high bits by d positions is denoted

by RotHid. For example, RotHi1(0123456789ABCDEF16) = 03468ACE12579BDF16. The ordinary

(without rotation) shift towards low bits by 1 position is denoted by ShLo.

The Bash-f function consists of 24 rounds, each of them is a composition of basic transfor-

mations described below.

2

L3. Vertical planes are transformed by linear mappings L3. They utilize the operations ⊕
and RotHid. Cyclic shifts, which provide diffusion of bits in words, are used only here. There

are 4 shifts in total. A tuple [m1, n1,m2, n2] of their values refines L3 where necessary.

A triple (W0,W1,W2) = L3[m1, n1,m2, n2](w0, w1, w2) is calculated by the following algo-

rithm:

W0 ← w0 ⊕ w1 ⊕ w2,

W1 ← w1 ⊕ RotHim1(w0)⊕ RotHin1(W0),

W2 ← w2 ⊕ RotHim2(w2)⊕ RotHin2 (w1 ⊕ RotHin1(W0)) .

It takes 6 additions, provided that a preimage of RotHin2 is determined during the calculation

of W1.

S3. All vertical bit triples are tied together by the same S-box s : {0, 1}3 → {0, 1}3. The

mapping S3 applies s to bit triples of a vertical plane (W0,W1,W2). S3 uses the operations ¬,

∧, ∨ and ⊕ (in decreasing order of precedence). It is the only nonlinear mapping in Bash-f.

The target plane is transformed as follows:

(W0,W1,W2)← (W0 ⊕W1 ∨ ¬W2,W1 ⊕W0 ∨W2,W2 ⊕W0 ∧W1).

P . The state words are shuffled according to a permutation P : SP (u) replaces Su. P rotates

the horizontal planes and simultaneously permutes the words within the planes:

P (u) =


π0(u) + 8, 0 ≤ u < 8,

π1(u− 8) + 16, 8 ≤ u < 16,

π2(u− 16), 16 ≤ u < 24.

Here πi is the permutation of the i-th plane:

π0(v) = (v + 2(v mod 2) + 7) mod 8,

π1(v) = v + 1− 2(v mod 2),

π2(v) = (5v + 6) mod 8.

Round constants. In each round a constant C ∈ {0, 1}64 is added to the word S23. The

constants are not repeated and all the rounds become different.

The constants are built as consecutive states of a linear feedback shift register with a prim-

itive characteristic polynomial. The initial state of the register is composed of the first 8 octets

of the S-box of the Belt block cipher [5]. The coefficients of the characteristic polynomial are

also determined by 8 octets (the first appropriate) of this S-box.

Overall, Bash-f acts as follows.

Algorithm Bash-f

Input: S = S0 ‖ S1 ‖ . . . ‖ S23, Si ∈ {0, 1}64.
Output: the updated state S.

Steps:

1 C ← B194BAC80A08F53B16.

2 For i = 1, 2, . . . , 24:

2.1 [m1, n1,m2, n2]← [8, 53, 14, 1];

3

2.2 for v = 0, 1, . . . , 7:

(a) (Sv, Sv+8, Sv+16)← L3[m1, n1,m2, n2](Sv, Sv+8, Sv+16);

(b) (Sv, Sv+8, Sv+16)← S3(Sv, Sv+8, Sv+16);

(c) [m1, n1,m2, n2]← 7[m1, n1,m2, n2] mod 64;

2.3 S ← SP (0) ‖ SP (1) ‖ . . . ‖ SP (23);

2.4 S23 ← S23 ⊕ C;

2.5 if the lowest bit of C is zero, then C ← ShLo(C);

else C ← ShLo(C)⊕ AED8E07F99E12BDC16.

3 Return S.

The reference implementation of Bash-f and Bash in whole is available in [1].

3 The S3 nonlinear mapping

In S3 the bitslice technique is used: bits of n = 3 words are processed simultaneously by the

same S-box s, this block is described by a simple boolean circuit which is extended naturally

from bits to words.

In most known cases the bitslice technique is used with n = 4. These cases cover the block

ciphers Serpent (where the technique was actually introduced), Noekeon and Rectangle, the

hash functions JH, Luffa and others.

The complexity of a circuit that provides an acceptable cryptographic quality of the un-

derlying S-box increases quickly with n. Even for n = 5, one should weaken s to simplify the

circuit. Such a weakening has been used in Keccak. We have chosen another approach: use

the strongest S-box of the smallest suitable dimension n. Since for n = 2 all bijective S-boxes

are affine (and therefore not suitable), we have selected n = 3.

The target S-box s maps x = x0x1x2 ∈ {0, 1}3 to y0y1y2 ∈ {0, 1}3. The domain of s can

naturally be transformed into F3
2 or Z8 = {0, 1, . . . , 7}. In the latter case a binary word w0w1w2

is interpreted as the number w0 + 2w1 + 4w2. We specify s by the word s(0)s(1) . . . s(7) ∈ Z8
8

of such numbers.

We can also specify s by its coordinate algebraic normal forms, that is, the polynomials si ∈
F2[x0, x1, x2]/(x

2
0 − x0, x21 − x1, x22 − x2) such that yi = si(x0, x1, x2), i = 0, 1, 2.

Finally, the action of s can be transferred to F8 and set up by the permutation polyno-

mial p(z) ∈ F8[z]. Due to Hermite’s criterion (see [8]), its degree ≤ 6. We represent F8 as the

quotient ring F2[ξ]/(ξ
3 + ξ + 1) or F2[ξ]/(ξ

3 + ξ2 + 1) and get two polynomials p(z). In both

cases words w0w1w2 correspond to the elements w0 + w1ξ + w2ξ
2 of the chosen ring.

In Table 1 all the possible forms of the finally selected S-box are listed. The 3rd row of

the table corresponds to the representation F8 = F2[ξ]/(ξ
3 + ξ + 1) and the last one to F8 =

F2[ξ]/(ξ
3 + ξ2 + 1).

The optimal S-boxes. There are 8! = 40320 appropriate S-boxes. We call a box s optimal

if it satisfies the standard cryptographic criteria R1 — R3.

R1. The equation s(x⊕ α)⊕ s(x) = β has no more than 2 (the minimum value) solutions

for any non-zero α, β ∈ {0, 1}3.
R2. The nonlinearity of s is equal to 2 (the maximum value).

R3. The coordinate functions of s and their nontrivial linear combinations have degree 2

as algebraic normal forms.

4

Table 1: The final S-box

12346750

(x1x2 + x2 + x0 + 1, x0x2 + x2 + x1 + x0, x0x1 + x2)

1 + (ξ + ξ2)z + (ξ2)z2 + (1 + ξ2)z3 + (1 + ξ + ξ2)z5 + (1 + ξ)z6

1 + (1 + ξ2)z2 + (1 + ξ + ξ2)z3 + (1)z4 + (ξ)z5 + (ξ)z6

We have found that there are 10752 optimal 3-bit S-boxes (every 4 of 15), R1 yields R2

and R3, R2 yields R1 and R3, but R3 does not necessary yield either R1 or R2 (there are

38976 > 10752 S-boxes satisfying R3).

It was proved in [6, 9] that any 3-bit substitution s is affine equivalent to one of the 4

canonical: 01234567, 01234576, 01234675 or 01243675. Affine equivalence means that one

substitution can be transformed into another by invertible affine transformations of preimages

and images. For such transformations the optimality of s is preserved. Since the first 3 canonical

substitutions are not optimal, all the optimal S-boxes are affine equivalent to the 4th one and

therefore to each other.

The golden S-boxes. Due to R1, precisely 4 output differences β = β0β1β2 correspond

to a non-zero input difference α = α0α1α2. The output differences form an affine plane of

dimension 2. Criterion R4 requires this plane to satisfy the following equation:

α0β0 + α1β1 + α2β2 = 1. (1)

This equation has been chosen for reasons of simplicity and symmetry.

R4 can facilitate the estimation of resistance of Bash-f against differential attacks. For

example, if α = 100, then β0 is necessarily non-zero. In other words, a single error in the first

bit of a difference is preserved. It is clear, that other single errors are preserved too.

The next criterion relates to linear attacks. There always exist non-zero α, β ∈ {0, 1}3 such

that the relation

α · x = β · s(x)

holds with probability 6= 1/2 for a random x. The dot here denotes the scalar product of

words-as-vectors. The word β above is called the input mask, and α is the output mask. Due

to R2, there are 4 acceptable α for each non-zero β, and they again form an affine plane of

dimension 2. Criterion R5 requires that this plane is also described by the equation (1).

R5 implies that acceptable input-output differences are also acceptable output-input masks

and vice versa. Hence, since all Bash-f components except S3 are linear, any acceptable

differential characteristic is also an acceptable linear one. Moreover, both characteristics have

the same cryptanalytic quality expressed in the number of active S-boxes. In fact, R5 means

that analysis of the strength of Bash-f against differential and linear attacks are the same.

By direct calculations, R4 and R5 are equivalent: R4 yields R5 and vice versa.

Criterion R6 requires that the mappings x 7→ s(x) and x 7→ s(x)⊕001 have no fixed points.

Informally, a fixed point is an idle cycle of s. It is desirable to eliminate such cycles. The

mapping x 7→ s(x) ⊕ 001 is examined because a bit of a round constant can be added to the

last bit of s(x).

The optimal S-boxes satisfying R4 – R6 are called golden. All 16 golden S-boxes are listed

in Table 2.

The platinum S-boxes. Turning back to the description of Bash-f, we see that S3 can

be implemented with 7 logical operations. It is the minimal number of operations needed to

5

Table 2: The golden S-boxes

S-box # S-box # S-box # S-box

1 12346750 5 30526714 9 52743601 13 70123645

2 16307245 6 34567201 10 56702314 14 72013456

3 23145670 7 36015274 11 67143052 15 72451630

4 23507416 8 36457012 12 67501234 16 74162350

implement an optimal S-box and this minimum is required by Criterion R7. We have found

that there are 660 optimal S-boxes satisfying R7 and 8 of them are golden. The ordinal

numbers of the suitable golden boxes are highlighted bold in Table 2.

Criterion R8 provides complexity of the description of s by polynomials over F8: s satis-

fies R8 if in its both permutation polynomials p(z) = a0 + a1z + . . . + a6z
6 each coefficient

(including the zero one) is repeated no more than three times.

Only the 1st and 10th golden S-boxes satisfy R7 and R8. We call them platinum. The

platinum S-boxes differ only in the output y2 by the constant term 1. We have selected the

first platinum S-box: 12346750.

4 The L3 linear mapping

The structure. Both the mappings S3 and L3 transform vertical planes. But whereas S3 acts

on vertical bit triples separately, L3 establishes connections between them. These connections

are built using the operations ⊕ and RotHid.

Let (w0, w1, w2) be a preimage of L3 and (W0,W1,W2) be an image. In this section we

write wd for RotHid(w), w ∈ {0, 1}64, and + for ⊕.

We only consider bijective mappings L3, which have the following structure:

W0 ← w0 + w1 + w2,

W1 ← w1 + am1 + bn1 ,

W2 ← w2 + cm2 + dn2 .

Here a, b, c, d are words constructed from w0, w1, w2. They are either the base words wi or

their sum wi + wj or, in the case of c and d, elements of the set {w1 + A,w1 + B,A + B},
where A = am1 , B = bn1 .

To calculate Wj, we have to use 4 rotations and at least 6 additions. Criterion R1 requires

the number of additions to be minimal. That means that the words a, b, c, d can be computed

without extra cost during the main calculations.

Let us illustrate R1. If L3 is represented by a tuple (a, b, c, d), then L3 = (w0,W0, w2, w2+B)

satisfies R1, but L3 = (W0, w0 + w1,W1, w1 + w2) does not. Indeed, in the first case the

sum w2 + B can be calculated along with W1. In the second case the sums w0 + w1, w1 + w2,

W0 = w0 + w1 + w2 must be calculated with only 2 additions, which is impossible.

In the next criteria we assume that L3 has a reasonable shift tuple [m1, n1,m2, n2]. It means

that the residues

0,m1, n1,m2, n2,m1 +m2,m1 + n2, n1 +m2, n1 + n2 mod 64

are pairwise distinct.

6

Criterion R2 requires that any bit of any of the words wi affects several (at least one) bits

of each of the words Wj.

Criterion R3 relates to the inverse mapping L3−1. It requires that any bit of any of the

words Wj affects approximately half of the bits in each of the words wi. In other words, R3

requires that the matrix of L3−1 contains about equal numbers of ones and zeros.

The characteristic

BranchNumber(L3) = min
x∈{0,1}192\{0192}

(wt(x) + wt(L3(x)))

describes the diffusion properties of L3. Here wt(x) is the Hamming weight of x. Criterion R4

requires that BranchNumber(L3) ≥ 5. The threshold 5 is the maximum which can be achieved

with the chosen structure of L3.

There are 20 structures satisfying R1 — R4. They are listed in Table 3.

Table 3: The optimal structures of L3

(a, b, c, d) # (a, b, c, d)

1 (w0,W0, w0,W1) 11 (w0,W0, A,W1)

2 (w0,W0, w1,W1) 12 (III) (w0,W0,W1, w1 +B)

3 (I) (w0,W0, w2, w1 +B) 13 (w0,W0,W1, A+B)

4 (w0,W0, w2, A+B) 14 (w0, w0 + w2,W1, w1 +B)

5 (w0,W0, w0 + w1, w1 +B) 15 (w0, w1 + w2,W1, A+B)

6 (w0,W0, w0 + w1, A+B) 16 (IV) (w2,W0, w0,W1)

7 (II) (w0,W0, w0 + w2,W1) 17 (W0, w0 + w1, w0,W1)

8 (w0,W0, w0 + w2, w1 + A) 18 (W0, w1 + w2, w0,W1)

9 (w0,W0, w1 + w2,W1) 19 (W0, w1 + w2,W1, w1 + A)

10 (w0,W0, w1 + w2, w1 + A) 20 (W0, w1 + w2,W1, A+B)

S-box activation. Consider the mappings L3 and S3 in the context of differential attacks.

Assume that they transform the differences in pairs of preimages rather than the preimages

themselves. An input difference w0 ‖ w1 ‖ w2 of L3 is transformed into an output differ-

ence W0 ‖ W1 ‖ W2, which is the input difference of S3. The difference w0 ‖ w1 ‖ w2 activates

the v-th S-box, if the v-th vertical bit triple W0vW1vW2v 6= 000. To protect against differential

attacks, it is important that differences of small Hamming weight or, in other words, errors in

a small amount of positions activate as many S-boxes as possible.

Let min[i→?] be the minimal number of S-boxes that are activated by i errors in the input

of L3. Criterion R5 requires the characteristics min[i →?] with i = 1, 2, 3 to be maximal

possible:

min[1→?] = 4, min[2→?] = 3, min[3→?] = 3.

There are 4 structures in Table 3 satisfying R5. They are marked with the additional

indices I — IV.

Backward activation. Let min[? → j] be the minimal number of errors in an input

of L3 needed to activate exactly j S-boxes. Criterion R6 requires that L3 has large enough

characteristics min[?→ 1] and min[?→ 2] under certain parameters [m1, n1,m2, n2].

The upper bounds of the target characteristics are presented in Table 4. Each bound can be

reached for some [m1, n1,m2, n2]. The table shows that the type III mappings do not satisfy R6.

7

Table 4: The upper bounds for min[?→ 1], min[?→ 2]

Type min[?→ 1] min[?→ 2]

I 103 74

II 109 49

III 109 3

IV 109 51

Note that there is no need to calculate min[?→ 3]: it equals to 2 due to the fact that min[1→
?] > 3 and min[2 →?] = 3. Instead of min[? → 3] we use the characteristic min[?>3 → 3]: the

smallest greater than 3 number of errors needed to activate 3 S-boxes. Criterion R7 requires

this characteristic to be large enough under certain shift tuples. For the mappings of types II

and III the target characteristic equals to 4, for the type I it can reach 51. After R7 we only

keep the mappings of the latter type.

The criteria R6, R7 suppress (lock) getting errors of small weight in backward iterations

of Bash-f. Such locks will play a crucial role in our estimation of the number of active S-boxes.

Inversion. The “backward locks” are caused by complexity of the inversion of L3. Let us

analyze this inversion, i.e. the determination of (w0, w1, w2) from (W0,W1,W2).

A type I mapping can be inverted as follows: Solve the equation

w2 + wm1
2 + wm2

2 + wm1+m2
2 + wm1+n2

2 = Wm1+n2
0 +Wm1+n1+n2

0 +W n2
1 +W2 +Wm1

2

for w2, then determine

w0 ← W−m1
1 +W−m1−n2

2 + w−m1−n2
2 + wm2−m1−n2

2 ,

w1 ← W n1
0 +W−n2

2 + w−n2
2 + wm2−n2

2

(the operations in the exponents are done modulo 64).

In general, and in particular in this case, the main part of the inversion is finding a solution wi

of a equation

f(wi) = F (W0,W1,W2).

The left side of this equation is determined by a characteristic polynomial f that belongs to the

quotient ring R = F2[x]/(x64 +1). In order to solve the equation, the inverse (in R) polynomial

f−1 should be found and applied to the both sides:

wi = f−1(F (W0,W1,W2)).

The polynomial f is invertible in R if and only if it contains an odd number of monomials,

i.e. f(1) = 1. Under invertibility, f−1(x) = (f(x))63. It is interesting that the type I mappings

have characteristic pentanomials, while the mappings of types II — IV have characteristic

trinomials. Perhaps, this is the reason for the advantages of the type I.

Shifts. L3 has such a structure that the rotation of input words wi by d bits implies the

rotation of the output words Wj also by d bits. This means that the differences w0 ‖ w1 ‖ w2

and wd
0 ‖ wd

1 ‖ wd
2 activate the same number of S-boxes. We consider these differences are

equivalent and choose a canonical representative in each equivalence class. The choice is made

in the lexicographical manner: a canonical difference w0 ‖ w1 ‖ w2 should contain ones as early

to the left as possible.

8

Table 5: The lower bounds for #[i→ j]

i\j 3 4 5 6

2 3 0 3 10

3 3 3 22

4 0 18 44

5 0 12

6 0 7

Let #[i → j] be the number of canonical differences with i errors needed to activate j

S-boxes. Some lower bounds for #[i→ j] are presented in Table 5. All the bounds are tight.

Criterion R8 requires to use such shift tuples [m1, n1,m2, n2] that provide the lower bounds

of the table along with the following constraints:

min[?→ 1] ≥ 70, min[?→ 2] ≥ 50, min[?>3 → 3] ≥ 40, #[3→ 6] ≤ 64.

Appropriate shift tuples are presented in Table 6.

The characteristics of L3[m1, n1,m2, n2] do not change, if we multiply the elements

of [m1, n1,m2, n2] by an odd number modulo 64. Such a multiplication establishes the equiv-

alence relation among shift tuples. The table presents only one tuple from each equivalence

class, such one that contains 1 as left as possible.

Table 6: The optimal shift tuples

[m1, n1,m2, n2] min[?→ 1] min[?→ 3] min[?>3 → 3]

1 [1, 4, 55, 16] 83 50 40

2 [1, 10, 25, 58] 91 56 40

3 [1, 13, 47, 57] 93 60 40

4 [1, 14, 53, 44] 87 61 40

5 [1, 49, 29, 55] 98 61 45

6 [1, 51, 17, 6] 88 60 45

8 [1, 52, 45, 15] 88 52 40

9 [1, 53, 14, 5] 85 66 41

10 [1, 53, 50, 45] 94 58 40

11 [1, 54, 57, 26] 81 58 41

12 [1, 57, 18, 30] 75 57 43

13 [1, 60, 36, 47] 72 54 43

14 [8, 53, 14, 1] 87 59 43

15 [18, 10, 40, 1] 89 67 40

Eventually, the tuple [8, 53, 14, 1] was chosen. We explain the choice in the following section.

5 The P permutation

Digraphs. The permutation P rotates the horizontal planes and simultaneously applies the

underlying permutation πi to the words of the i-th plane, i = 0, 1, 2. The horizontal planes

9

are rotated upward and therefore we call P an up-permutation. We also use the notion of

down-permutations which rotate planes downward.

Let G be the digraph with the vertices 0, 1, . . . , 7 and the arcs

{(u, v) : v ∈ {π0(u), π1(u), π2(u)}}.

An arc (u, v) shows that P maps some word from the u-th vertical plane into the v-th one. If

the word is mapped into the c-th horizontal plane, then the arc is labeled by c.

Throughout the remainder of this section we will consider G as a primary configuration

and P as a secondary one. It means that G determines P , not vice versa.

We can determine P from G only up to the direction of rotation of the horizontal planes.

Among the suitable up- and down-permutations we choose the one having the maximal order.

In case the orders are equal we favor the up-permutation.

Strong regularity. Each vertex of G has in- and out-degrees of 3, i.e. G is the 3-regular

digraph. Let M be the adjacency matrix of G. Criterion R1 requires that all elements of M2

are positive or, in other words, there is a walk of length 2 between any two vertices.

Criterion R1 provides fast diffusion between words: after only 3 rounds of Bash-f each

output word depends on each of the input words.

Due to the 3-regularity, the sum of elements of any row in M2 equals to 9. Since the entries

of M2 are positive, the row contains exactly one element equal to 2. Criterion R2 requires that

all the elements 2 are on the main diagonal of M2. Under R2, there exists exactly one walk

in G of length 2 connecting any two distinct vertices and exactly 2 walks of length 2 from any

vertex to itself.

Criterion R2 implies that G is strongly regular. We recall that a k-regular directed graph

with ν vertices is called strongly regular if all diagonal elements of its adjacency matrix equal

to zero and there exist integers t, λ and µ such that

M2 = tI + λM + µ(J − I −M).

Here I is the identity matrix of order ν, J is the all-ones square matrix of the same order.

In our case (ν, k, t, µ, λ) = (8, 3, 2, 1, 1). The strongly regular digraph with these parameters

is registered in the database [4]. It is constructed according to the scheme proposed by Jorgensen

in [7]: for µ | (k − 1), ν = (k + 1)(k − 1)/µ, t = µ + 1, λ = µ, the digraph G has an arc (u, v)

if and only if u+ kv ≡ 1, 2, . . . , k (mod ν).

Jorgensen’s digraph is isomorphic to the digraph shown on Figure 2. We have verified that

this digraph is isomorphic to any other strongly regular digraph with the required parameters.

The isomorphism does not change the characteristics of P which are of interest to us, therefore

we have chosen the digraph of Figure 2 as G.

Labeling the arcs. The base digraph of Figure 2 has no labels assigned to its arcs. When

assigning the labels, it is only required that no two arcs with the same label are directed either

to or from the same vertex.

We make the additional requirement R3: the digraph should remain the same if we shift

all vertices clockwise by two positions. This requirement provides the almost-symmetry which

allows us to make fast error propagation throughout the rounds of the sponge function. The

full symmetry of the digraph means that it remains the same when the vertices are shifted by

one position. Unfortunately, fully symmetric digraphs do not exist.

All almost-symmetric digraphs can be derived from the two canonical digraphs shown on

Figure 3 by renumbering arc labels. The left digraph of the figure is denoted by G1 and the

right one by G2. A renumbering is described by a permutation abc over the set {0, 1, 2}: the

10

Figure 2: The base digraph

labels 0, 1 and 2 are replaced by a, b and c, respectively. The renumberings are sorted in the

natural order

012, 120, 201, 210, 102, 021

and are indexed from 0 to 5. Let Gj
i be the digraph derived from Gi by the j-th renumbering,

i = 1, 2, j = 0, 1, . . . , 5.

Figure 3: The canonical almost-symmetric digraphs

Walks in G. Let S[v, c] be the c-th word of the v-th vertical plane, v ∈ {0, 1, . . . , 7},
c ∈ {0, 1, 2}. In other words, S[v, c] = S3v+c.

With each word S[v, c] we associate a set A[v, c] ⊆ {0, 1, . . . , 63}. This set consists of indices

of vertical bit triples which depend on the 0th bit of S[v, c] after L3 is applied. If the v-th column

is transformed by L3[m1, n1,m2, n2] of type I, then

A[v, 0] = {0,m1, n1, n1 + n2},
A[v, 1] = {0, n1, n2, n1 + n2},
A[v, 2] = {0, n1,m2, n1 + n2}.

11

Let (v0, v1, . . . , vd) be a walk in G, ci be a label of its arc (vi−1, vi), i = 1, 2, . . . , d, and

c0 ∈ {0, 1, 2}. The walk characterizes how errors propagate through the rounds of the sponge

function. Specifically, consider how the error in the k-th bit of S[v0, c0] is processed by the

cascade L3-then-S3-then-P . After L3 the error activates S-boxes of the v0-th vertical plane

whose indices are from the set {k} + A[v0, c0]. After S3 input differences of the activated S-

boxes can affect each bit of the corresponding output differences. After P some of the affected

bits become bits of S[v1, c1] and, in turn, in the next round can affect the bit triples of the v1-th

vertical plane having the indices from the set {k}+A[v0, c0] +A[v1, c1]. After all d steps along

the chosen walk the affected bit triples are those which lay in the vd-th plane and whose indices

belong to the set {k}+ A[v0v1 . . . vd, c0], where

A[v0v1 . . . vd, c0] = A[v0, c0] + A[v1, c1] + . . .+ A[vd, cd].

By the sum of sets A and B in the previous expressions we understand the following:

A+B = {(a+ b) mod 64: a ∈ A, b ∈ B}.

We can omit the parentheses since such a summation is associative. In particular, the cardinality

of the set {k}+A[v0v1 . . . vd, c0] does not depend on k. We can use k = 0 without changing the

cardinality.

Now consider the walks of length 2 in more detail. Define

B[v0v2, c0] = ∪v1A[v0v1v2, c0],

where the union is over the vertices v1 such that (v0, v1, v2) is a walk in G. We have exactly one

choice for v1 if v0 6= v2 and two choices if v0 = v2. The set B[v0v2, c0] describes the influence

of 0th bit of S[v0, c0] on the bit triples of the v2-th vertical plane after 3 rounds.

Criterion R4 requires the cardinalities |B[v0v2, c0]| to be as close to 64 as possible for all

vertices v0, v2 and initial labels c0. It means that any input bit of the hash state after 3 rounds

affects as many output bits as possible.

Shift tuples. Criterion R4 relates both to the labels in G and to the shift tuples in L3.

Until now we have considered the single L3 mapping with a fixed shift tuple. But in fact 8

separate L3 mappings are used, each potentially having its own tuple.

We have decided to define the shift tuple for the v-th vertical plane as

gv[m1, n1,m2, n2] mod 64.

Here [m1, n1,m2, n2] is a base tuple and g ∈ {7, 9, 23, 25, 39, 41, 55, 57} is an element of the

order 8 modulo 64.

Under such a choice of shift tuples, the sets A[v, c], v = 0, 1, . . . , 7, are derived from each

other by multiplication by g, repeating in a cycle. Due to this fact and almost-symmetry

of G, the simultaneous maximization of |B[v0v2, c0]| becomes easier. Indeed, for an even d and

v′i = (vi + d) the sets B[v0v2, c0] and B[v′0v
′
2, c0] differ by multiplication by gd and, therefore,

have the same cardinality.

Recall that the considered in this paper characteristics of L3 do not change if the shift

tuple [m1, n1,m2, n2] is multiplied by an odd factor gd.

The generation of parameters. Labeling arcs in G and setting the shifts in L3 have

been done as follows.

1. For ([m1, n1,m2, n2] ∈ Table 6, i ∈ {1, 2}, j ∈ {0, 1, . . . , 5}, g ∈ {7, 9, . . . , 57}) do:

12

1) r ← maxv0,v2,c0(64− |B[v0v2, c0]|);
2) R←

∑
v0,v2,c0

(64− |B[v0v2, c0]|);

3) ifR ≤ 3072 append the configuration ([m1, n1,m2, n2], G
j
i , g) to the list of the optimal

ones.

2. From the list of the optimal configurations, select one for which the vector (r, R) is

lexicographically minimal. If several configurations have the same minimal vector (r, R),

select the first one of them.

The characteristics r and R describe the dependency matrix of the 3 rounds of Bash-f. It

is a square matrix of order 1536, whose (i, j)-th element is the indicator of whether the error

in the i-th bit of the Bash-f state can trigger the error in the j-th bit after 3 rounds. The

characteristic r describes the maximum “incompleteness” of the 64×64 blocks of the dependency

matrix, while R describes the “full incompleteness”. We have selected the threshold of 3072

meaning that the matrix contains no more than 3072 · 3 · 64 zero items, i.e. the matrix is

incomplete by no more than 3072·3·64
15362

= 1
4
.

Table 7: The optimal configurations ([8, 53, 14, 1], Gj
i , g)

Gj
i g r R # Gj

i g r R

1 G1
2 9 27 2988 7 G4

2 7 25 2968

2 G1
2 57 27 2988 8 G4

2 9 26 2964

3 G2
2 7 25 2980 9 G4

2 55 25 2968

4 G2
2 9 25 2996 10 G4

2 57 26 2964

5 G2
2 55 25 2980 11 G5

2 9 28 2952

6 G2
2 57 25 2996 12 G5

2 57 28 2952

All the optimal configurations have the same basic shift tuple [m1, n1,m2, n2] = [8, 53, 14, 1].

Other parts of configurations are listed in Table 7. Eventually, the 7th configuration was

selected.

References

[1] Bee2: A cryptographic library. Avail. at https://github.org/agievich/bee2, last access

04.06.2016.

[2] Bertoni G., Daemen J., Peeters M., Van Assche G. Cryptographic sponge functions. Version

0.1. Avail. at http://sponge.noekeon.org/CSF-0.1.pdf, 14.01.2011.

[3] Bertoni G., Daemen J., Peeters M., Van Assche G. Sponge functions. Ecrypt Hash Work-

shop 2007, May 2007.

[4] Brouwer A. E., Hobart S. A. Parameters of directed strongly regular graphs. Avail. at

http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html, last access 04.06.2016.

[5] Cryptography standards of Belarus. Avail. at http://apmi.bsu.by/resources/std (in

Russian), last access 14.03.2016.

13

https://github.org/agievich/bee2
http://sponge.noekeon.org/CSF-0.1.pdf
http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html
http://apmi.bsu.by/resources/std

[6] Harrison M. A. On the Classification of Boolean Functions by the General Linear and

Affine Group. Journal of the Society for Industrial and Applied Mathematics, 12: 284–299,

1964.

[7] Jorgensen L. K. Directed strongly regular graphs with µ = λ. Discrete Math, 231: 289–293,

2001.

[8] Lidl R., Niederreiter H. Finite fields. Cambridge University Press, 1997.

[9] Lorens C. S. Invertible Boolean Functions. IEEE Transactions on Electronic Computers,

EC-13(5): 529–541, 1964.

6 Appendix

6.1 The Bash algorithms

Below we give a description of the Bash algorithms in whole. We use the following additional

notations: 〈d〉n — a word w ∈ {0, 1}n which contains the binary representation of an integer d

(with the little-endian conventions); Lom(w) — the first m bits of a word w.

Algorithm Bash

Input: l ∈ {16, 32, 48, . . . , 256}, X ∈ {0, 1}∗.
Output: Y ∈ {0, 1}2l (the hash value of X).

Steps:

1 Append to X the word 01 ‖ 0t, where t is the minimal non-negative integer such that |X|+
2 + t is a multiple of 1536− 4l.

2 Write the resulting word X ‖ 01 ‖ 0t in the form X1 ‖ X2 ‖ . . . ‖ Xn, Xi ∈ {0, 1}1536−4l.

3 S ← 01472 ‖ 〈l/4〉64.

4 For i = 1, 2, . . . , n do:

4.1 Lo1536−4l(S)← Xi;

4.2 S ← Bash-f(S).

5 Y ← Lo2l(S).

6 Return Y .

6.2 Proofs

Proposition 1. A polynomial f(x) ∈ R = F2[x]/(x64 +1) is invertible if and only if it contains

an odd number of monomials, i.e. f(1) = 1. Under invertibility,

f−1(x) = (f(x))63.

14

Proof. To be invertible it is necessary and sufficient that f(x) is coprime to the modulus x64 +

1 = (x+ 1)64. It means that f(x) is not a multiple of x+ 1 or, equivalently, f(1) 6= 0.

Let f(x) =
∑63

i=0 aix
i be invertible, that is,

∑
i ai = 1. Then

f(x)64 =
63∑
i=0

ai
(
x64
)i ≡ 63∑

i=0

ai = 1 (mod x64 + 1)

and f−1 = f 63.

Proposition 2. Each strongly regular digraph with the parameters (8, 3, 2, 1, 1) is isomorphic

to the digraph of Fig. 2.

Proof. We can return from a vertex v back to itself along exactly 2 walks of length 2: (v, v′, v)

and (v, v′′, v). These walks describe bidirectional arcs [v, v′] (between v and v′) and [v, v′′]

(between v and v′′). Bidirectional arcs induce bidirectional cycles: a cycle [v0, v1, v2, . . . , vn−1, v0]

consists of the arcs [v0, v1], [v1, v2], . . . , [vn−1, v0].

Besides (v, v′) and (v, v′′), there exists the third arc (v, v′′′) whose head is v. This arc does

not belong to any bidirectional cycle. Call such an arc ordinary. Ordinary arcs induce ordinary

cycles.

The bidirectional cycles of length 1 and 2 are impossible. Therefore, there exist the following

variants of a cycle structure:

1. A full bidirectional cycle of length 8.

2. Two bidirectional cycles of length 4.

3. Bidirectional cycles of length 5 and 3.

The 2nd variant is impossible. Indeed, if [v0, v1, v2, v3, v0] is a cycle of length 4 then v2 can

be reached from v0 by two walks of length 2: (v0, v1, v2) and (v0, v3, v2). It contradicts the

strong regularity.

Consider the 3rd variant. Let [v0, v1, v2, v0] be a cycle of length 3. From each vertex vi there

goes exactly one arc outside the cycle. Let it end at a vertex ui. The vertices u0, u1, u2 lay

on the bidirectional cycle of length 5. Consequently, there exist two vertices ui and uj which

are connected by a bidirectional arc. Without loss of generality, let these vertices be u0 and

u1. Then v0 is connected with u1 6= v0 by two walks of length 2: (v0, u0, u1) and (v0, v1, u1). It

again contradicts the strong regularity.

Only the first variant of the bidirectional cycle structure remains possible. By renumbering

vertices, we can bring the sole bidirectional cycle to the form [0, 1, 2, . . . , 7, 0].

Let us consider the ordinary arcs. They can only have a form (i, i + 2) or (i, i − 2) (here

and below addition and subtraction are performed modulo 8). Indeed,

a) if an arc (i, i+ 1) is present, then we can reach from i only 2 vertices in 1 step (by walks

of length 1) and, therefore, no more than 6 vertices in 2 steps;

b) if an arc (i, i+ 3) is present, then we can not reach i+ 3 from i in 2 steps: we can reach

it either from i+ 2 or i+ 4, but the arcs (i, i+ 2) and (i, i+ 4) are absent;

c) if an arc (i, i+ 4) is present, then we can not reach i+ 4 from i in 2 steps: we can reach

it either from i+ 3 or i+ 5, but the arcs (i, i+ 3) and (i, i+ 5) are absent;

15

d) the arcs (i, i+ 5) are processed in the same way as the arcs (i, i+ 3), and (i, i+ 7) in the

same way as (i, i+ 1).

The restrictions on the ordinary arcs imply that the ordinary cycles can only have the

following forms: (i, i + 2, i + 4, i + 6, i) (the clockwise cycle) or (i, i − 2, i − 4, i − 6, i) (the

counterclockwise cycle). The digraph must contain exactly 2 such cycles: one clockwise and

one counterclockwise. By renumbering the vertices of the digraph we can bring it to the form

of the figure.

6.3 Dependency matrices

Fig. 4 represents MD-matrices after the first 4 rounds of Bash-f. The non-zero elements of

the matrices are shown as black pixels. The index i numerates rows of the matrices from top

to down. The index j numerates columns from left to right.

Figure 4: The dependency matrices after 1 — 4 rounds

16

	Introduction
	The Bash-f sponge function
	The S3 nonlinear mapping
	The L3 linear mapping
	The P permutation
	Appendix
	The Bash algorithms
	Proofs
	Dependency matrices

