
The ZUC-256 Stream Cipher

Abstract. In this paper, we describe the ZUC-256 stream cipher, a
successor of the previous ZUC-128 stream cipher used in the 3GPP con-
fidentiality and integrity algorithms 128-EEA3 and 128-EIA3. The aim is
a new stream cipher that offers the 256-bit security for the upcoming ap-
plications in 5G. For the authentication, various tag sizes are supported
with the IV-respecting restriction.

Keywords: Stream ciphers, ZUC, 256-bit security.

1 Introduction

The core of the 3GPP confidentiality and integrity algorithms 128-EEA3 and
128-EIA3 is the ZUC-128 stream cipher [1]. With the development of the com-
munication and computing technology, there is an emerging need for the new
core stream cipher in the upcoming 5G applications which offers 256-bit security.
To be highly compatible with the current 128-bit version, we present the ZUC-
256 stream cipher, which is a successor of the previous ZUC-128 stream cipher.
The new ZUC-256 stream cipher differs from ZUC-128 only in the initialization
phase and in the message authentication codes (MAC) generation phase, other
aspects are all the same as the previous ZUC-128 algorithm.

This paper is structured as follows. In Section 2, we give the detailed descrip-
tion of the new ZUC-256 stream cipher, including both the initialization phase,
the keystream generation phase and the MAC generation phase. Finally, some
conclusions are drawn in Section 3.

2 The Description of the Cipher

In this section, we will present the detailed description of the ZUC-256 stream
cipher. The following notations will be used hereafter.

- Denote the integer modular addition by �, i.e., for 0 ≤ x < 232 and 0 ≤ y <
232, x� y is the integer addition mod 232.

- Denote the integer addition modulo 231 − 1 by x + y mod 231 − 1 for 1 ≤
x ≤ 231 − 1 and 1 ≤ y ≤ 231 − 1.

- Denote the bitwise exclusive OR by ⊕.
- Denote the bit string concatenation by ‖.
- Denote the bitwise logic OR by |.
- K = (K31,K30, ...,K2,K1,K0), the 256-bit secret key used in the ZUC-256

where Ki for 0 ≤ i ≤ 31 are 8-bit bytes.

2

- IV = (IV24, IV23, ..., IV17, IV16, IV15, . . . , IV1, IV0), the 184-bit initialization
vector used in the ZUC-256 where IVi for 0 ≤ i ≤ 16 are 8-bit bytes and
IVi for 17 ≤ i ≤ 24 are 6-bit string occupying the 6 least significant bits of
a byte.

- di for 0 ≤ i ≤ 15 are the 7-bit constants used in the ZUC-256 stream cipher.

- ≪, the left rotation of a 64-bit operand, x ≪ n means ((x � n) | (x �
(64− n))).

As depicted in Fig.1 and Fig.2, there are 3 parts involved in ZUC-256: a 496-bit
linear feedback shift register (LFSR) defined over the field GF(231−1), consisting
of 16 31-bit cells (s15, s14, · · · , s2, s1, s0) defined over the set {1, 2, · · · , 231−1}; a
bit reorganization layer (BR), which extracts the content of the LFSR to form 4
32-bit words, (X0, X1, X2, X3), used in the following finite state machine (FSM);
there are 2 32-bit words R1 and R2 used as the memory in the FSM.

The Key/IV loading scheme is as follows.

s0 = K0 ‖ d0 ‖ K21 ‖ K16

s1 = K1 ‖ d1 ‖ K22 ‖ K17

s2 = K2 ‖ d2 ‖ K23 ‖ K18

s3 = K3 ‖ d3 ‖ K24 ‖ K19

s4 = K4 ‖ d4 ‖ K25 ‖ K20

s5 = IV0 ‖ (d5 | IV17) ‖ K5 ‖ K26

s6 = IV1 ‖ (d6 | IV18) ‖ K6 ‖ K27

s7 = IV10 ‖ (d7 | IV19) ‖ K7 ‖ IV2

s8 = K8 ‖ (d8 | IV20) ‖ IV3 ‖ IV11

s9 = K9 ‖ (d9 | IV21) ‖ IV12 ‖ IV4

s10 = IV5 ‖ (d10 | IV22) ‖ K10 ‖ K28

s11 = K11 ‖ (d11 | IV23) ‖ IV6 ‖ IV13

s12 = K12 ‖ (d12 | IV24) ‖ IV7 ‖ IV14

s13 = K13 ‖ d13 ‖ IV15 ‖ IV8

s14 = K14 ‖ (d14 | (K31)4H) ‖ IV16 ‖ IV9

s15 = K15 ‖ (d15 | (K31)4L) ‖ K30 ‖ K29,

where (K31)4H is the high 4 bits of the byte K31 and (K31)4L is the low 4 bits of
K31, and the constants di for 0 ≤ i ≤ 15 are defined as follows.

d0 = 0100010

d1 = 0101111

d2 = 0100100

d3 = 0101010

The ZUC-256 Stream Cipher 3

 31mod 2 1

0s 1s
2s

3s 4s
5s

6s 7s
8s

9s 10s 11s 12s 13s
14s

15s

152 172 212
202

81+2







Fig. 1. The keystream generation phase of the ZUC-256 stream cipher

 31mod 2 1

0s 1s
2s

3s 4s
5s

6s 7s
8s

9s 10s 11s 12s 13s
14s

15s

152 172 212
202

81+2





Fig. 2. The initialization phase of the ZUC-256 stream cipher

4

d4 = 1101101

d5 = 1000000

d6 = 1000000

d7 = 1000000

d8 = 1000000

d9 = 1000000

d10 = 1000000

d11 = 1000000

d12 = 1000000

d13 = 1010010

d14 = 0010000

d15 = 0110000.

There are 32 + 1 = 33 rounds of initialization in the ZUC-256, which is depicted
as follows.

1. Load the key, IV and constants into the LFSR as specified above.
2. Let R1 = R2 = 0.
3. for i = 0 to 31 do

– Bitreorganization()
– Z = F (X0, X1, X2)
– LFSRWithInitializationMode(Z � 1)

4. – Bitreorganization()
– Z = F (X0, X1, X2) and discard Z
– LFSRWithworkMode().

Now we specify the relevant subroutines one-by-one.

LFSRWithInitializationMode(u)

1. v = 215 · s15 + 217 · s13 + 221 · s10 + 220 · s4 + (1 + 28) · s0 mod(231 − 1)
2. if v = 0 then set v = 231 − 1
3. s16 = v + u mod(231 − 1)
4. if s16 = 0 then set s16 = 231 − 1
5. (s16, s15, · · · , s2, s1) → (s15, s14, · · · , s1, s0).

LFSRWithworkMode()

1. s16 = 215 · s15 + 217 · s13 + 221 · s10 + 220 · s4 + (1 + 28) · s0 mod(231 − 1)
2. if s16 = 0 then set s16 = 231 − 1
3. (s16, s15, · · · , s2, s1) → (s15, s14, · · · , s1, s0).

Bitreorganization()

1. X0 = s15H ‖ s14L
2. X1 = s11L ‖ s9H

The ZUC-256 Stream Cipher 5

3. X2 = s7L ‖ s5H
4. X3 = s2L ‖ s0H ,

where siH is the high 16 bits of the cell si and sjL is the low 16 bits of the cell
sj .

F (X0, X1, X2)

1. W = (X0 ⊕R1)�R2

2. W1 = R1 �X1

3. W2 = R2 ⊕X2

4. R1 = S(L1(W1L ‖W2H))
5. R2 = S(L2(W2L ‖W1H)),

where S = (S0, S1, S0, S1) is the 4 parallel S-boxes which are the same as those
used in the previous ZUC-128 and L1 and L2 are the two MDS matrices used in
the ZUC-128. The ZUC-256 stream cipher generates a 32-bit keystream word at
each time instant.

KeystreamGeneration()

1. Bitreorganization()
2. Z = F (X0, X1, X2)⊕X3

3. LFSRWithworkMode().

ZUC-256 generates 20000-bit keystream for each frame, i.e., for each frame
it produces 625 keystream words; after that a key/IV re-synchronization is per-
formed with the key/constants fixed and the IV changing into a new value.

The MAC generation algorithm of ZUC-256 is as follows. Let M = (m0,m1,
· · · ,ml−1) be the l-bit length plaintext message and the size t of the tag is
selectively to be of 32, 64 and 128 bits.

MAC Generation(M)

1. Let ZUC-256 produce a keystream of L = d l
32e + 2 · t

32 words. Denote the
keystream bit string by z0, z1, · · · , z32·L−1, where z0 is the most significant
bit of the first output keystream word and z31 is the least significant bit of
the keystream word.

2. Initialize Tag = (z0, z1, · · · , zt−1)
3. for i = 0 to l − 1 do

– let Wi = (zt+i, · · · , zi+2t−1)
– if mi = 1 then Tag = Tag ⊕Wi

4. Wl = (zl+t, · · · , zl+2t−1)
5. Tag = Tag ⊕Wl

6. return Tag

For the different sizes of the MAC tag, to prevent the forgery attack, the
constants are specified as follows.

6

1. for the tag size of 32 bits, the constants are

d0 = 0100010

d1 = 0101111

d2 = 0100101

d3 = 0101010

d4 = 1101101

d5 = 1000000

d6 = 1000000

d7 = 1000000

d8 = 1000000

d9 = 1000000

d10 = 1000000

d11 = 1000000

d12 = 1000000

d13 = 1010010

d14 = 0010000

d15 = 0110000.

2. for the tag size of 64 bits, the constants are

d0 = 0100011

d1 = 0101111

d2 = 0100100

d3 = 0101010

d4 = 1101101

d5 = 1000000

d6 = 1000000

d7 = 1000000

d8 = 1000000

d9 = 1000000

d10 = 1000000

d11 = 1000000

d12 = 1000000

d13 = 1010010

d14 = 0010000

d15 = 0110000.

The ZUC-256 Stream Cipher 7

3. for the tag size of 128 bits, the constants are

d0 = 0100011

d1 = 0101111

d2 = 0100101

d3 = 0101010

d4 = 1101101

d5 = 1000000

d6 = 1000000

d7 = 1000000

d8 = 1000000

d9 = 1000000

d10 = 1000000

d11 = 1000000

d12 = 1000000

d13 = 1010010

d14 = 0010000

d15 = 0110000.

The test vectors of the ZUC-256 stream cipher for the keystream generation
phase are as follows.

1. let Ki = 0x00 for 0 ≤ i ≤ 31 and IVi = 0x00 for 0 ≤ i ≤ 24, then the first
20 keystream words are
– 58d03ad6,2e032ce2,dafc683a,39bdcb03,52a2bc67,

– f1b7de74,163ce3a1,01ef5558,9639d75b,95fa681b,

– 7f090df7,56391ccc,903b7612,744d544c,17bc3fad,

– 8b163b08,21787c0b,97775bb8,4943c6bb,e8ad8afd

2. let Ki = 0xff for 0 ≤ i ≤ 31 and IVi = 0xff for 0 ≤ i ≤ 16 and IVi = 0x3f

for 17 ≤ i ≤ 24, then the first 20 keystream words are
– 3356cbae,d1a1c18b,6baa4ffe,343f777c,9e15128f,

– 251ab65b,949f7b26,ef7157f2,96dd2fa9,df95e3ee,

– 7a5be02e,c32ba585,505af316,c2f9ded2,7cdbd935,

– e441ce11,15fd0a80,bb7aef67,68989416,b8fac8c2

The test vectors of the ZUC-256 stream cipher for the tag authentication
phase are as follows.

1. let Ki = 0x00 for 0 ≤ i ≤ 31 and IVi = 0x00 for 0 ≤ i ≤ 24, M =
0x 00, · · · , 00︸ ︷︷ ︸

100

with the length l = 400-bit, then the 32-bit tag, 64-bit tag and

128-bit tag are
– The 32-bit mac is 9b972a74

8

– The 64-bit mac is 673e5499 0034d38c

– The 128-bit mac is d85e54bb cb960096 7084c952 a1654b26

2. let Ki = 0x00 for 0 ≤ i ≤ 31 and IVi = 0x00 for 0 ≤ i ≤ 24, M =
0x 11, · · · , 11︸ ︷︷ ︸

1000

with the length l = 4000-bit, then the 32-bit tag, 64-bit tag

and 128-bit tag are
– The 32-bit mac is 8754f5cf

– The 64-bit mac is 130dc225 e72240cc

– The 128-bit mac is df1e8307 b31cc62b eca1ac6f 8190c22f

3. let Ki = 0xff for 0 ≤ i ≤ 31 and IVi = 0xff for 0 ≤ i ≤ 16 and IVi = 0x3f

for 17 ≤ i ≤ 24, M = 0x 00, · · · , 00︸ ︷︷ ︸
100

with the length l = 400-bit, then the

32-bit tag, 64-bit tag and 128-bit tag are
– The 32-bit mac is 1f3079b4

– The 64-bit mac is 8c71394d 39957725

– The 128-bit mac is a35bb274 b567c48b 28319f11 1af34fbd

4. let Ki = 0xff for 0 ≤ i ≤ 31 and IVi = 0xff for 0 ≤ i ≤ 16 and IVi = 0x3f

for 17 ≤ i ≤ 24, M = 0x 11, · · · , 11︸ ︷︷ ︸
1000

with the length l = 4000-bit, then the

32-bit tag, 64-bit tag and 128-bit tag are
– The 32-bit mac is 5c7c8b88

– The 64-bit mac is ea1dee54 4bb6223b

– The 128-bit mac is 3a83b554 be408ca5 494124ed 9d473205

The security claim of the ZUC-256 stream cipher is the 256-bit security in
the 5G application setting. For the forgery attacks on the authentication part,
the security level is the same as the tag size and the IV is not allowed to be
re-used. If the tag verification failed, no output should be generated.

3 Conclusions

In this paper, we have presented the details of the new ZUC-256 stream cipher.
Any cryptanalysis is welcome.

References

1. Specification of the 3GPP Confidentiality and Integrity Algorithm-
s 128-EEA3 and 128-EIA3, Document 4: Design and Evaluation Reprot.
http://www.gsmworld.com/documents/EEA3_EIA3_Design_Evaluation_v1_1.pdf.

