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Abstract. Inthis paper we propose a three participants variation of the Diffie-Hellman
protocol. This variation is based on the Weil and Tate pairings on elliptic curves, which
were first used in cryptography as cryptanalytic tools for reducing the discrete logarithm
problem on some elliptic curves to the discrete logarithm problem in a finite field.
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1. Introduction

Since its discovery in 1976, the Diffie—-Hellman protocol has become one of the most
famous and largely used cryptographic primitives. In its basic version, it is an efficient
solution to the problem of creating a common secret between two participants. Since
this protocol is also used as a building block in many complex cryptographic protocols,
finding a generalization of Diffie-Hellman gives us a new tool which can be used to
construct many new and efficient protocols. The goal of this paper is precisely to describe
such a generalization of Diffie-Hellman. For this generalization, examples of such new
and efficient protocols are numerous and quickly expanding, for example, we can cite
identity-based encryption [6], short signatures [7], verifiable random functions [26], . . .

This article is a revised and updated version of [16]. It shows how the Weil and Tate
pairings can be used to devise a tripartite generalization of the basic Diffie—Hellman pro-
tocol. These pairings were first used in cryptography as cryptanalytic tools to reduce the
complexity of the discrete logarithm problem on some “weak” elliptic curves. However,
using them for constructive purposes is a novel idea. It was pointed out by Galbraith et
al. in [13] that this idea independently appeared in [37].

Of course, the problem of setting a common key between more than two participants
can be addressed using the usual Diffie—Hellman (see the protocol for conference keying
in [8]). However, all the known protocols, that make use of classical cryptographic
assumptions, require at least two rounds of communication. In some cases these two
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rounds can be somewhat cumbersome, and a single pass would be much preferable. To
give abasic example, exchanging an email message key with a two round Diffie-Hellman
protocol would require both participants to be connected at the same time, which is a
very undesirable property for this application. On the other hand, the basic one round
Diffie—Hellman protocol can be fitted to this email application by replacing one of the two
ephemeral keys by a static public key. Similarly, the one round tripartite Diffie—-Hellman
presented here can be transformed into non-interactive public key systems (e.g., identity-
based encryption [6]). As a consequence, it presents a real improvement compared with
conference keying. Of course, due to its very simplicity, it also lacks some refinements,
for example, as the basic Diffie-Hellman key exchange it is unauthenticated and allows
man in the middle attacks. Possible ways of achieving authentication are proposed in [3]
and [44].

2. The Discrete Logarithm Problem on Weak Elliptic Curves

The discrete logarithm problem on elliptic curves is one of the few standard assumptions
that is currently used in public key cryptography. When elliptic curve cryptosystems
were first proposed in [34], computing the number of points of a given curve was a
challenging task, since the Schoof, Elkies and Atkin algorithm was not yet mature
(for a survey of this algorithm see [24]) and the p-adic methods, recently proposed by
Satoh [38] and Mestre [32] were unknown. Since their invention, these p-adic methods
have been implemented by many people, e.g., see [11], [20], [15] and [25]. Thus, at that
time, in order to avoid the hard task of point counting, the idea of using special curves
where this problem becomes easy quickly arose. As a side bonus, the addition formulas
are somewhat simpler on such curves and the cryptosystems can thus be implemented
more efficiently. However, it was shown later that some of these special cases are less
secure than general curves.

As of today, two categories of weak special cases have been identified. In one of them,
the discrete logarithm problem becomes easy (i.e., polynomial time) as was shown in
[42], [40] and [39]. This easiest case happens when the number of points of the elliptic
curve over I, is exactly p. Luckily, they were never really used! in cryptosystems. In
the other category of special curves, the discrete logarithm problem on the elliptic curve
is transformed into a discrete logarithm problem in a small extension of the field of
definition of the elliptic curve. In particular, this category contains the class of super-
singular elliptic curves, which were considered in elliptic curve cryptosystems since the
early days. In 1993 Menezes, Okamato and Vanstone proposed in [31] a first reduction
algorithm called the MOV reduction and based on a mathematical tool, the Weil pairing.
A second reduction algorithm was proposed by Frey and Riick in [12], we refer to it
as the FR reduction. A survey of these reductions, as cryptanalytic tools, was published
at Eurocrypt *99 [14], and gave a comparison of these two reductions. The conclusion
was that the FR reduction can be applied to more curves than the MOV reduction and
moreover that it can be computed faster than the MOV reduction. Thus for all practical

1T thank one of the anonymous referrees for pointing out US patent number 5,272,755 by Miyaji and
Tatebayashi (1993) patenting the use of these anomalous curves.
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usage, the authors recommended the FR reduction. However, they mistakenly claimed
that the computation of the FR and MOV reduction may be a heavy load. In fact, thanks
to an idea of Miller [33], this is not the case and these reductions can be computed very
efficiently, which is a essential preliminary in order to transform them from cryptanalytic
to cryptographic tools. Of course, in that case, speed is of the essence and recent results
show that it is possible to improve upon Miller’s algorithm by using numerous tricks
(see [13] and [4]).

At first, it seemed surprising to use elliptic curves which are known to be weaker
than random curves in cryptographic constructions. Indeed, this forces us to rely on
the hardness of the discrete logarithm in some finite field IF,x, thus losing one of the
most important advantages in elliptic-curve-based systems, i.e., the small size of the
keys. However, as recent history has shown, the loss is more than balanced by the extra
properties offered by such curves, and their versatility in new constructions.

The Basic Tool—Pairings on an Elliptic Curve

The MOV and FR reductions are both based on a bilinear pairing, in the MOV case it
is the Weil pairing and in the FR case it is called the Tate pairing. In this section we
describe these pairings for an elliptic curve E defined over IF,. The pairings also exist
for elliptic curves defined over F,-. In order to define these pairings, we first need to
introduce the function field and the divisors of the elliptic curve. Very informally, the
function field K (E) of E is the set of rational maps in x and y modulo the equation of
E (e.g. y*> — x> — ax — b). A divisor D is an element of the free group generated by
the points on E, i.e., it can be written as a finite formal sum: D = Zi a; (P;), where the
P; are points on E and the a; are integers. In what follows, we only consider divisors of
degree 0, i.e., such that ) ; a; = 0.

Given any function f in K(E), we can build a degree 0 divisor div(f) from the
zeros and poles of f simply by forming the formal sum of the zeros (with multiplicity)
minus the formal sum of the poles (with multiplicity). Any divisor D = div(f) will
be called a principal divisor. In the reverse direction, testing whether a degree 0 divisor
D =", a;(P;) is principal or not, can be done by evaluating ) " a; P; on E. The result
is the point at infinity if and only if D is principal.

Given a function f in K (E) and a point P of E not belonging to the support of div( f),
f can be evaluated at P by substituting the coordinates of P for x and y in any rational
map representing f. Given a divisor D = ), a;(P;), whose support is disjoint from
the support of div(f), the function f can also be evaluated at D using the following
definition:

f(D) = Hf(ﬂ)“".

Using these notions, we can now define the Weil pairing: it is a bilinear function
from the torsion group E[{] to the multiplicative group i, of £th roots of unity in some
extension of I, say I ,«. Given two £-torsion points P and Q, we compute their pairing
e¢(P, Q) by finding two functions fp and fp such that div(fp) = £(P) — £(0O) and
div(fo) = £(Q) — £(0), and by evaluating

ee(P, Q) = fp(Q)/fo(P).
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This pairing e;: E[€] x E[£] — w, is bilinear and non-degenerate. This means that
e(aP,bQ) = e,(P, Q)" and that for some points of P and Q, we have e,(P, Q) # 1.
Using such a pairing for cryptanalytic applications is quite easy, indeed, given a point X
“independent” from P and Q, we can shift the discrete logarithm problem Q = AP on
the elliptic curve to the discrete logarithm problem e;(Q, X) = ¢;(P, X)* in I« Then
we can apply a subexponential algorithm to solve the latter problem. This application of
the Weil pairing is called the MOV reduction and appeared in [31].

The variant of the Tate pairing described in [12] appears to be more complicated,
since it operates on divisors instead of points. However, it is at least twice as fast as the
Weil pairing, since it suffices to evaluate a single function from the function field instead
of two. In fact, in some cases there is an asymmetry between the divisors involved and
it is possible to gain an even larger speed factor by using some fast implementation
techniques proposed in [4] which exploit this asymmetry. More precisely, the divisors
involved in the Tate pairing are £-fold divisors, i.e., divisors D such that £ D is principal,
it takes values in p, and it is bilinear and non-degenerate. Given two £-fold divisors D)
and D, defined over an extension I« that contains the £th roots of unity, we find first
fp, such that div(fp,) = €D;. The Tate pairing of D; and D; is then defined as

k__
(D1, D2) = fp,(Dy)? ~V/E,

This pairing is also bilinear and non-degenerate. A very important point to remember
with the Tate pairing is the fact that the divisors involved, D; and D,, are in truth
representatives of classes of equivalence. Two divisors D; and D] belong in the same
class when their difference D; — D] is a principal divisor. Moreover, for the purpose of
discrete logarithm reduction, the Tate pairing #,(D;, D,) can easily be transformed into
a pairing that involves points. As in [12], one can simply fix two points R and S, and
remark that

1((AP) = (0), (R) = (8)) = 1e((P) — (0), (R) — ().

For more information about the Weil and Tate pairings and their cryptanalytic appli-
cations, we refer the reader to [31] or [12].

3. A Tripartite Diffie—Hellman Protocol

In this section we want to build an analog of the Diffie-Hellman protocol that involves
three participants, A, B and C, requires a single pass of communication and allows the
construction of a common secret K g c. By a single pass of communication, we mean
that each participant is allowed to talk once and broadcast some data to the other two.
The main idea is similar to ordinary Diffie-Hellman, we start from some elliptic curve
E and some (¢-torsion) point P. Then A, B and C each choose a random number (a, b or
¢) and they respectively compute Py = aP, P = bP and P¢c = ¢ P and broadcast these
values. Then they respectively compute F(a, Pg, Pc), F (b, P4, Pc) and F(c, P4, Pg),
where the function F is chosen in a way that ensures that these numbers will be equal
and that this common value K g ¢ will be hard to compute given P, Pg and Pc. The
problem now is to find such an F.
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Using the Weil pairing, it seems natural to use the following formula:
Fw(x, P, Q) = eu(P, Q).
With this definition, one can easily check that
Fw(a, Py, Pc) = Fw(b, Pa, Pc) = Fw(c, Pa, Py) = Fw(1, P, P)™.

However, due to the properties of the Weil pairing, this simple construction fails because
e;(P, P) = 1 and thus K p c is the constant 1 and can easily be guessed by any attacker.

Nevertheless, the basic idea is sound and can in fact be implemented. Two different
approaches are possible, we can either make use of two independent points or modify the
pairing to make it work with a single point. Initially, we proposed to use two independent
points P and Q, instead of one in order to derive a working protocol. In this section we
focus on this two points approach, the single point variation is addressed in Section 4.

Using the Weil pairing, the two points approach works as follows: we randomly
choose two independent? points P and Q in the ¢-torsion of the curve, and we have the
three participants compute and broadcast (Pa, Qa), (Pg, Op) and (Pc, Qc). Then A, B
and C can respectively compute Fw(a, Pg, OQc) = Fw(a, Op, Pc), Fw(b, Pa, Oc) =
Fw(b, Qa, Pc) and Fy(c, Pa, Q) = Fw(c, Qa, Pg). Moreover, all these values are
equal and thanks to the independence of P and Q, they are not constant. Moreover,
assuming that ¢ is prime and that a, b and ¢ are random integer from [1; £ — 1], the
common value is in fact picked uniformly at random from the set of (non-trivial) £th
roots of unity.

It is also easy to use the Tate pairing instead of the Weil pairing, and to define another
function F as

Fr(x, Dy, D,) = t¢(D1, Dy)".

Assuming that A, B and C are still broadcasting two points, we can now define two
divisors for each user. The simplest technique is for any point X on the curve to define
Dy = (X) — (0). Then A, B and C can respectively compute

FT(as DP};? DQC) = FT(Cl, DPcv DQB)v

Fr(b, Dp,, Dg.) = Fr(b, Dp., Dg,),

Fr(c, Dp,, Dg,) = Fr(c, Dp,, Dg,).
However, with this choice, some care must be taken to evaluate Fr. Indeed, we must
choose a different representative for one of the divisor classes, otherwise, at some point
during the Tate pairing computation, we try to divide zero by zero, the computation fails
and returns an undefined result. To avoid this pitfall, we can replace D by the equivalent
divisor (Q + R) — (R), where R is some randomly chosen point.

Another approach to avoid this difficulty is to choose different divisors. For a user U,
define

DY = (Py) = (Qu) = Dp, — Dy,
D) = (Py + Qu) — (0) = Dp, + Dy, .

2 When the £-torsion points P and Q are independent, no value of a exists such that P = aQ or Q = aP.
This is easily checked, since in that case e, (P, Q) # 1.
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Then A, B and C can respectively compute

Fr(a, D!®, D?) = Fr(a, D\, D),
Fr(b, DV, D) = Fr(b, D\, DY),
Fr(c, D®, DY) = Fr(c, DV, D).

Because of the bilinearity of the pairing, all these numbers are equal.

With both choices involving the Tate pairing, it is important to check the non-degener-
acy when setting the cryptosystem. This is simply done by checking that z,(Dp, D) (or
t¢(Dp — D¢, Dp + Dy)) is not equal to 1. Then, as with the Weil pairing, the common
value is uniformly distributed.

As we explained above in Section 2, since Fr is based on the Tate pairing, it will be
faster to evaluate than Fy. Finally, our initial tripartite Diffie—Hellman protocol can be
summarized as follows:

Alice Bob Charlie
Choose a Choose b Choose ¢
Compute (Pa, Oa) Compute (Pg, OB) Compute (Pc, Qc)
Broadcast Py, Pg, Pc and Qa, OB, Qc
Compute the common key as

FT(a, DPB’ DQC)
Fr(b, Dp,, Do)
Fr(c, Dpy, Do)
Alternatively, compute the common key as:
Fr(a, (Pg) — (QB), (Pc + Qc) — (0))
Fr(b, (PA) — (Qa), (Pc + Qc) — (0))
Fr(c, (Pg) — (QB), (PA+ 0A) — (0))

Choice of Parameters and Construction of the Elliptic Curve

For this tripartite Diffie-Hellman protocol to be efficient, we need to choose a finite field
F, (with ¢ = p") and an elliptic curve such that the chosen pairing can be efficiently
computed. We recall that the pairing takes values in a multiplicative subgroup of some
extension field F«. In this section we focus on the two points protocol, however, most
of the arguments remain unchanged with the single point variant discussed in Section 4.
Together with the curve, we need to choose two points P and Q such that the chosen
pairing will be nondegenerate. As explained above this property can easily be checked
by testing this pairing on the base points. Note that when k # 1 at least one of the points
P and Q must be defined over the extension field IF« rather than over I, for the pairing
not to be degenerate.

The most important parameter when choosing an elliptic curve together with a pairing
is the value of k. This value should be small enough, otherwise computations in [«
become infeasible and the pairing cannot be computed. On the other hand, for some
applications such as short signatures [7], it might be useful to have a moderately large
value of k for the discrete logarithm problem in [F« to be as hard as possible. At present,
several values of k can be efficiently constructed, namely k = 1,k =2,k =3,k =4
and k = 6. These values can be reached by using either supersingular curves or complex
multiplication techniques.



A One Round Protocol for Tripartite Diffie-Hellman 269

With supersingular curves, the possible values of k depend on the characteristic p of
the field of definition, and also on the parity of the exponent r in the cardinality g = p”
of the field. The possible values of k for supersingular curves are described in [30].
With care, they can also be derived from the complete classification of supersingular
curves given on p. 140 of [41]. With p = 2, there is (up to isomorphism in the algebraic
closure of IF,) a single supersingular curve, with the equation y?> + y = x*. However,
when restricting ourselves to isomorphisms in IF,, more curves are available. A complete
classification is given on pp. 46—48 of [30]. We take the example of the curve y2+y = x>.
When r is odd, this curve has g + 1 points and k¥ = 2. When r is even, this curve has
(p"”* + 1)? points and k = 1. The value k = 4 can be reached when r is odd with a
different curve, such as y> +y = x3 + x or y> + y = x> + x + 1. With p = 3, there is
(up to isomorphism in the algebraic closure of IF3) a single supersingular curve, with the
equation y? = x3 4 2x 4+ 1. As in the characteric 2 case, matters are more complicated
when restricting ourselves to isomorphisms in IF,;. A classification for this case is given in
[36]. For example, with the curve y? = x3 4+ 2x + 1, we find that whenr = 0 (mod 6),
then k = 1. Whenr =3 (mod 6), we getk = 2. Whenr =2 (mod6)orr =4

(mod 6), we getk = 3. Whenr =1 (mod6)orr =5 (mod 6), we get k = 6.
Finally, with p a prime greater than 4, when r is odd we have k = 2 and when r is even,
k=1lork=23.

With complex multiplication techniques, it is also possible to construct efficiently
curves with k up to 6. These constructions are described in [22] and [35]. In particular,
complex multiplication techniques give a construction for curves of trace 2. However,
they only work when the number of points of the curve, i.e., ¢ — 1, is a square or a small
multiple of a square. Allowing for slower key generation, larger values of k are possible
(see [5] and [10]). The current record, set in [10], is k = 50.

4. Single Point Approach

In Section 3 our first try to devise a tripartite Diffie-Hellman protocol used a single point
P. However, this simple approach did not work and we had to switch to a two points
variation. In this section we revisit the first proposal and see that with some small changes
a single point variant of the protocol can work. We describe three different techniques
to reach this goal and examine their respective advantages and drawbacks.

The first technique was hinted at in our initial proposal, and it involves curves of
trace 2, i.e., curves with ¢ — 1 points. Let E be a curve of trace 2 and let £ be a prime
dividing g — 1. Moreover, assume that £> does not divide g — 1, then the curve E contains
exactly £ points of ¢-torsion. Indeed, any elliptic curve contains either £ or £2 points of
£-torsion, moreover, in the latter case, £2 must divide the cardinality of the curve. In this
context, any non-zero £-torsion point P generates the full subgroup of ¢-torsion. As a
consequence, any {-torsion divisor can be written in term of P and its multiples. Since
the Tate pairing is non-degenerate on the group of £-torsion divisors, the basic proposal
of Section 3 must work using for parameters the curve E, the point P and the function
Fr derived from the Tate pairing. As a consequence, this approach seems to meet all the
requirements for a single point pairing protocol. However, there is a major drawback,
namely, we known of no algorithm to construct such a curve E with trace 2 efficiently.
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Indeed, the only efficient known approach to building trace 2 curves is by using complex
multiplication techniques. However, in that case the number of points on the curve E is
a small multiple of a square. Thus, we cannot find a sufficiently large prime £ such that
¢ divides g — 1 and £ does not.

The second technique stems from a proposal of Verheul in [43] and uses an additional
property of supersingular curves. More precisely, on a supersingular curve, the group of
points has more automorphisms than on an ordinary curve. These extra automorphisms
were called distortions by Verheul. They nicely map points defined over the base field
to points defined over an extension field. This implies that the image ¢(P) of a point P
defined over the base field by a distortion ¢ must be linearly independent from P. As
a consequence, the Weil pairing of P and ¢(P) is non-trivial, i.e., e;(P, ¢(P)) # 1.
Then, on the group generated by P, i.e., if £ is prime on the set of all £-torsion points
defined over the base field, we define a modified pairing ¢, as follows. Let R and S be
two multiples of P, then é,(R, S) is defined as

ei(R, S) = er(R, p(9)).

This modified pairing is symmetric and non-degenerate. It satisfies all the required prop-
erties for realizing a single point tripartite Diffie-Hellman protocol. For better efficiency,
it is also possible to define similarly a modified Tate pairing 7, as

i(R, S) = te(R, ¢(5)).

The only potential drawback is that this construction applies only to supersingular curves.
For a list of possible distortions on some useful supersingular curves, we refer the reader
to [17] and [19].

The third technique works as follows. Given any curve E over IF,, and £ a large prime
divisor of its cardinality, such that £ divides q" — 1, we know that the Tate pairing is non
degenerate on the group of £-torsion points which contains £ elements. Then, according
to [19], two possibilities arise, either the Tate pairing is anti-symmetric on the curve and
(up to a constant power) is equal to the Weil pairing, or it is not anti-symmetric. In the
latter case, among ¢ + 1 subgroups of the £-torsion, at most two are self-degenerate. So
by choosing such a curve together with a random point P, it is easy to verify whether
or not the subgroup generated by P can be used for one point pairing systems. Indeed,
it suffices to check that t,(Dp, Dp) # 1. Of course, as explained in Section 3, one of
the two instances of D p must be replaced by an equivalent divisor (P + R) — (R). The
main drawback with this construction is the lack of a “distinguished” subgroup as in
the case of supersingular curves. With supersingular curves, the distinguished subgroup
is the subgroup of points defined over the base field. It is useful in some applications
such as identity-based encryption since it provides a way to construct random points in
the subgroup with an unknown logarithm (in [6] this is done by using a function called
MapToPoint).

5. Security Issues

Clearly in order to be secure, the tripartite Diffie—Hellman described here requires the
discrete logarithm on the chosen elliptic curve to be hard, and the discrete logarithm
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in the finite field Fy+ to be hard. Since we placed ourselves in the cases where either
the MOV or the FR reduction applies, we know that the hardness of the elliptic curve
discrete logarithm problem implies the hardness of the finite field discrete logarithm
problem. However, it is not known whether the elliptic curve discrete logarithm on a
weak curve is as hard as the discrete logarithm in the corresponding finite field (in
the sense of the MOV or FR reduction). In fact, this is a very interesting open problem.
Moreover, as in the Diffie—Hellman case this is not the whole story, some Diffie-Hellman-
like problem and Diffie-Hellman-like decision problem should be hard in order to get
security.

Another important remark is that on curves where either the MOV or FR reduction
applies, the usual Diffie—-Hellman decision problem is mostly easy. Remember that the
usual Diffie-Hellman problem is given a quadruple (g, g, g, g°) to decide whether
¢ = ab. Combined with the work of Maurer and Wolf (see [27]-[29]), this leads to a
construction of groups where the DDH problem is easy, while the CDH and DL problems
are equivalent and presumably hard. Such a construction is detailed in [19]. To deal with
the two points version of pairing, it is useful to express the problem as follows. Given
a quadruple (g, g%, h, h), decide whether @ = b. When h is in the group generated by
g, the two formulations are equivalent. Now on an elliptic curve where the MOV (or
alternatively the FR) reduction applies, we can easily test for aquadruple (P, a P, Q, bQ)
whether a = b; it suffices to compute e;(a P, Q) and e,(P, bQ) and to compare them.
This test works as soon as P and Q are independent (i.e., when e, (P, Q) # 1). Note than
when Q is a multiple of P, the test does not work, except when a single point pairing,
as discussed in Section 4, is available.

With the current knowledge of elliptic curves, we believe that cryptosystems of this
kind are secure in practice as soon as the discrete logarithm in [« is hard. In the large
characteristic, qk should be at least a 1024-bit number. In the small characteristic, the
best currently known algorithm for computing a discrete logarithm, i.e., the function
field sieve (see [2], [1], and [18]), outperforms the large characteristic algorithms. As a
consequence, in this case, g© should be a larger number with 1536 or even 2048 bits. In
both cases, we should work in large enough subgroups of the elliptic curve and F, i.e.,
choose some large prime divisor £ of the order of the elliptic curve.

Security Assumptions and Their Relations

When using standard cryptographic groups in a discrete logarithm-based cryptosystem,
it is well known that the security relies on one of the three following assumptions: the
hardness of the discrete logarithm problem (DL), of the computational Diffie-Hellman
problem (CDH) or of the decision Diffie-Hellman problem (DDH). When dealing with
cryptographic groups that admit pairings, one cannot use the same set of basic problems.
Indeed, the existence of a pairing implies that DDH becomes easy. In this section we
describe some (hopefully) natural problems which are involved when using the single
point approach. We assume that we are using the (modified) Tate pairing and we denote
by G, the group generated by the base point P. Following® Boneh and Franklin in [6],

3 They were working with the modified Weil pairing and thus defined a one point Weil Diffie—Hellman
problem. However, our definition is based on theirs.
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we define the one point (modified) Tate Diffie—-Hellman (TDH) problem as follows:
— Given (P, aP, bP, cP) for random a, b, ¢ compute #(P, P)**.

As noted in [6], the TDH assumption implies that CDH is hard in the group of points
G, it also implies that CDH is hard in the group G, of roots of unity, where the pairing
takes its values. The security of the IBE scheme from [6] is based on TDH in the random
oracle model, thanks to the use of a hash function H. Without such a hash function, as
in the tripartite Diffie-Hellman protocol described in Section 3, we need to assume the
hardness of the decision problem associated with TDH, that we call DTDH. DTDH is
defined as follows:

— Given (P, aP, bP, cP) aquadruplet of elements from G, and f(P, P)¢ an element
of G, for random a, b, ¢ and d, decide whether d = abc.

The DTDH assumption implies DDH in G, and CDH in G, (remember that DDH in G is
easy). The first implication can be shown by remarking that when DDH is easy in G, then
DTDH is also easy. Indeed, d = abcif andonlyif (P, P), (aP,bP), (P,cP), (P, P)¥)
is a valid decision Diffie-Hellman instance.

Further, other related problems can be introduced to get a deeper understanding of
the security of pairing-based systems. Before introducing these problems, we digress
and ask the following question which arises quite naturally when looking at pairings:
Can they be used as cryptanalytic tools to solve DDH in more general groups? Indeed,
it suffices to find a group morphism from any group Gj to (one of the many possible)
G, to obtain an efficient algorithm for deciding DDH in G3. This would become even
more interesting if we could choose for G3 the multiplicative subgroup of order £ of
F,r,i.e., G itself. Indeed, this would give a partial solution to solve DDH in some finite
fields and would have a wide impact on many cryptographic schemes. Such an “attack”
was recently proposed in [9]. It requires the construction of a special auxiliary curve,
whose existence is conjectured by the authors of [9]. A recent preprint by Koblitz and
Menezes [21] shows that the approach of [9] is completely flawed, since the existence
of the required auxiliary curve is extremely unlikely. However, one might wonder about
variants of this attack.

In fact, we can get strong evidence against the existence of this kind of attack by
generalizing a result of Verheul from [43] and showing that any such attack would also
lead to an efficient algorithm against the computational (and not only decision) Diffie—
Hellman in the group G3 = G;. The result of Verheul was proved in the special case of
the multiplicative subgroup of order p? — p + 1 in FF 6, which is sometimes called the
XTR subgroup due to its relation to the XTR public key cryptosystem [23].

First, we describe more precisely how the DDH attack could work. As explained in [9]
and [21], we need a group morphism ¢ from G, (the multiplicative subgroup of order
¢in F, ) to G; (an additive subgroup of order £ of an elliptic curve defined over F-).
We also need to consider the modified Tate pairing 7(-, -) that solves the DDH in G; by
mapping pairs of points to £th roots of unity (i.e., back to G,). Given g, g“, g® and g¢
in G3, testing whether ¢ = ab can be done as in [9] by computing f((p(g), ©(g°)) and
f(p(g"), p(g?)) and testing equality. As long as ¢ is non-constant and f non-degenerate,
we get an efficient way of testing DDH. However, given ¢ and 7 we can in fact do much
more. Indeed, if g is a generator of the £th root of unity, then 7 (¢(g), ¢(g)) can be written
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as g*. Moreover, because of the non-degeneracy properties, 7(¢(g), ¢(g)) # 1 and thus
A # 0. Thanks to the bilinearity of 7, we can now check that 7 (¢(g%), p(g")) = g**.
If we could remove the constant A, then we would clearly be computing CDH. Assume
that £ is prime, then to remove A we proceed as follows. First note that

A3 =172 (mod 0).

Moreover, thanks to the relation

A+

(o), pg* ) =",

it is easy by using addition chains to compute A = g*' = g* . Now verify that

f(p(g*), p(A)) = g, which gives the expected solution for the CDH problem in
G3 = G, (and also in G) with two applications of the pairing 7.

As a consequence of this digression, we can now remark that the hardness of the CDH
problem in either G, or G, implies that the Tate pairing is hard to invert when one side
of the pairing is fixed. More precisely, it is hard to find a point R in G; and a morphism
¢ from G, to Gy such that, for all g in G,

iR, 9(g)=g.

We call this problem the fixed Tate inversion (FTI). A related, possibly easier, problem
is: given g, find any pair of points (S, 7') in G, such that (S, T) = g. We call it the
generalized Tate inversion (GTI).This last problem also appears in the following relation:
the hardness of the discrete logarithm in G, implies either the hardness of either GTI or
the discrete logarithm in G, . Indeed, when both the GTI and the discrete logarithm in G
are easy, it is possible to compute the discrete logarithm in G,. Assume that g = (P, P)
and & are two elements of G;. In order to find « such that 4 = g%, we first use GTI and
find two points Q and R such that (Q, R) = h. Using discrete logarithm computations
in G, we find @ and b such that Q = aP and R = bP. Then h = (aP,bP) = g’ and
o = ab.

We summarize the relations between all the complexity assumptions involved with
a single point pairing* in Fig. 1. Each arrow in the figure goes from a complexity
assumption to a weaker one. The figure does not include the conditional and non-uniform
equivalences between DL and CDH in a group that come from [29]. These equivalences
hold when an auxiliary curve defined over [F, and of sufficiently smooth order is known.

CDHg, ———  DLg,
/! N \
DTDH — TDH GTI — FTI —> DLg, < DLg orGTI
AN N\ /!

l)l)H([;72 — C])I‘[G2

Fig. 1. Relations between complexity assumptions in pairing cryptography.

4 A similar, but much more complicated diagram could be drawn for the two points pairing case.
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Note that in our case, G; and G, have the same cardinality £ and that the same auxiliary
curve can serve this purpose for both groups.

6. Conclusion

In this article we described a generalization of the Diffie—Hellman protocol to three parties
using the Weil or Tate pairing on elliptic curves. In recent years, this tripartite Diffie—
Hellman protocol has been an essential tool for building new cryptographic protocols
and applications.
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