Hash Function Luffa

Specification Ver. 2.0.1

Christophe De Canniere
ESAT-COSIC, Katholieke Universiteit Leuven

Hisayoshi Sato, Dai Watanabe
Systems Development Laboratory, Hitachi, Ltd.

2 October 2009

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
1

Luffa Specification NIST SHA-3 Proposal (Round 2)

Contents
(1__Introductionl 4
2 Preliminary| 5
IONS . o e e e e 5
2.1.1 Parameters 5)
P12 Symbold 6
structurel ... L. L L 6
2.3 lterations 7
[3 Chaining| 8
3.1 Message Padding| 8
3.2 Round Functionl. 8
3.2.1 Message Injection Function forw=3[. 10
3.2.2 Message Injection Function forw =4 11
3.2.3 Message Injection Function forw =25 11
............................ 11
4_Non-Linear Permutation| 12
M1 _Outlinel. 12
42 SubCrumbl 14
A3 MixWordl 14
4.4 AddConstantl 15
5 Tweaks. 17
[6 Optional Usage| 17
[A Starting Variables| 19
IB__Constants| 19
(B-1 Inmitial Values 19
B2 W =13 . . . o 20
B3 w =4 21
B4 w=>5 21
[C_Test Vectors| 22
C—1 Luffa-224) 22
C—2 Luffa-256] 22
C-3 Luffa-384] 22
C—4 Luffa-5120 23
(D Implementations of SubCrumb| 23
(D=1 For Intel Core2 Processors 23

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
2

Luffa Specification NIST SHA-3 Proposal (Round 2)

[E Implementations of Message Injection Function M]| 24
E-1 w=3 24
E2 w=4 25
E3w =0 . . . 26

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
3

Luffa Specification NIST SHA-3 Proposal (Round 2)

1 Introduction

This document specifies a family of cryptographic hash function algorithms
Luffa. The input and the output lengths of the algorithms are summarized
in Table [1I

Table 1: Input and output lengths

Algorithm | Message length (bits) | Hash length (bits) | Security (bits)
Luffa-224 < 204 224 112
Luffa-256 < 204 256 128
Luffa-384 < 2128 384 192
Luffa-512 < o1 512 256

Firstly, the notations used in the document are defined in Section 2l The
hash function Luffa consists of the chaining and the mixing function used in
each round of the chaining. The chaining and the underlying mixing function
are described in Section [3] and [l respectively. An optional usage of the hash
function Luffa is given in Section Bl In addition, some useful information to
implement the hash function such as the test vectors is given in Appendices.

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
4

Luffa Specification NIST SHA-3 Proposal (Round 2)

2 Preliminary

In this section, the basic terms and notations to describe the specification of
Luffa are defined.

2.1 Notations

2.1.1 Parameters

The message length in bits

The padded message length in bits

The number of message block (of 256 bits)

The number of sub-permutations (described in 3.2))

The hash length

The block length (Fixed to 256 bits in this document)

The starting variables

The variable which specifies the intermediate values of the state at
i-th round, j-th block

The message block at the i-th round

A subscript which specifies the round

A subscript which specifies the sub-permutation

A subscript which specifies the word

A subscript which specifies the bit position in a word

A subscript which specifies the step

The message injection function

The permutation of nyw bits

The permutation dealing with j-th block of n; bits

The output function

The variable which specifies the k-th word, [-th bit of the input of
the j-th block permutation @);

The variable which specifies the k-th word, [-th bit of the input of
i-th round, j-th block, r-th step function

The variable which specifies the k-th word, [-th bit of the output of
SubCrumb at i-th round, j-th block, r-th step

The variable which specifies the k-th word, [-th bit of the output of
MixWord at ¢-th round, j-th block, r-th step

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
5

Luffa Specification NIST SHA-3 Proposal (Round 2)

cgf,zvl: The variable which specifies the k-th word, [-th bit of the constant
used in j-th block, r-th step function

2.1.2 Symbols

In this paper, the following symbols are used to identify the operations.

@ Bitwise XOR operation
A Bitwise AND operation
| Concatenation of two bit strings
>>n Rotation n bits to the right (A 32-bit register is expected)
< n Rotation n bits to the left (A 32-bit register is expected)
0x Hexadecimal prefix

On the other hand, some pseudo codes are given in the paper. They are
written in C language manner and 32-bit registers are expected. In order to
remove any ambiguity, we also list up the operation used in the pseudo codes
as follows:

- XOR operation

| OR operation
>>n Shift n bits to the right
<< n Shift n bits to the left

2.2 Data Structure

The basic data size is a 32-bit and it is called a word. A 4 bytes data is stored
to a word in the big endian manner. In other words, the given 4 bytes data
Zo, ..., 3 is stored into a word a as follows:

a = [MSB] xol[z1[[zs]|zs [LSB],

where [MSB] (and [LSB]) means the most (and least) significant byte of the
word.

In the specification of Luffa, a 256-bit data block is stored in 8 32-bit
registers. In order to remove any ambiguity, we also define the ordering of a

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
6

Luffa Specification NIST SHA-3 Proposal (Round 2)

32 bytes data in 8 words. A 32 bytes data X = xg, 2, ..., xs3 is stored to 8
32-bit registers ag, . .., a; in the following manner:

X = [MSW] a0|]a1|]---||a7 [LSW],
ap = [MSB| zu||tagsi]|Takso||Tawes [LSB], 0 <k <S8,

where [MSW] (and [LSW]) means the most (and least) significant word.

A bit position in a word sequence is denoted by subscripts. Let aq, ..., a,
be a word sequence. Then the [-th bit (from the least significant bit) of the
k-th word is denoted by aj;, where the least significant bit is the 0-th bit.
In other words, the bit information of a; is given by

ap = [msb] ags1|larsol| - |larallaxo [Isb],

where [msb] and [Isb] mean the most and the least significant bit of the word
respectively.

2.3 Iterations

The message processing of Luffa is a chaining of a mixing function of a fixed
length input and a fixed length output. We call the mixing function as a
round function. The outline of the mixing function is defined in Section [3
A term round means the procedure to apply the round function.

The building block of the round function is a family of non-linear permu-
tations defined in Section [l It consists of iterations of a sub-function called
a step function. A term step means the procedure to apply the step function.

In order to clarify the round, the super-script with a parenthesis is used.
Le., the input to the i-th round function is denoted by X(¢~1. The corre-
sponding output of the round function is denoted by X = Round(X (1),
In the same manner, the input to the r-th step function of the i-th round
is denoted by X@=57=1 The corresponding output of the step function is
denoted by X~ = step(X~1"=1). The round can be abbreviated if it
is not necessary in the context.

The intermediate state of Luffa consists of 8w words, where w > 3 is a
positive integer (See Table 2] for the choice of w). An 8 word data is called
a block. The [-th bit of the input of i-th round, r-th step, j-th block, k-th

. (i—1,r—1)
word is denoted by a; .

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
7

Luffa Specification NIST SHA-3 Proposal (Round 2)

M@ M@ M
V0 — —» V —»! —> ------- — —»| >
Vi —MI{ P —{MIF P = o =M~ P > Ct—H
VW_1—> —» V] —> ------- — > >
i

Figure 1: A generic construction of a hash function based on a permutation

3 Chaining

The chaining of Luffa is a variant of a sponge function [I}, 2]. Figure [shows
the basic structure of the chaining. The chaining of a hash function consists
of the intermediate mixing C’ (called a round function) and the finalization
C". In addition to above two functions, the message padding is defined in
this section. The starting variables Vg, Vi, ..., V,,_1 used in the chaining are
given in Appendix [Al

3.1 Message Padding

Suppose that the length of the message M is [bits. First of all, the bit
string 100...0 is appended to the end of the message. The number of zeros
k should be the smallest non-negative integer which satisfies the equation
[+ 1+ k = 0mod 256. Therefore the length of the padded message should
be a multiple of 256 bits.

3.2 Round Function

The round function is a composition of a message injection function M I and
a permutation P of w - n, bits input. The permutation is divided into plural
sub-permutation (), of n, bits input (See Figure2]). Let the input of the i-th

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
8

Luffa Specification NIST SHA-3 Proposal (Round 2)

round be (H(()i_l), ce Hfjj)), then the output of the i-th round is given by

HY = Qi(X;), 0<j<w,
Xoll -+ [|[X1 = M](H((]i_l),...,H(i_l) M@,

w—1 >
where H](-O) =Vj.
In the specification of Luffa, the input length of the sub-permutation @),
is fixed to ny, = 256 bits, and the number of the sub-permutations w is defined
in Table 2

Table 2: The width of the registers
’ Hash length ny, \ Number of permutations w

224 3
256 3
384 4
512)

The message injection functions can be represented by the matrix over a
ring GF(2%)32. The definition polynomial of the field is given by ¢(x) = 2® +
r*+23+2+1. The map from an 8 word value (ay, . . ., ar) to an element of the
ring is defined by (3 _)<j-s ar2%)o<i<32. Note that the least significant word
ar is the coefficient of the heading term 27 in the polynomial representation.
In order to remove any ambiguity, we also define the multiplication by 0x02
(equivalent to x in the polynomial representation) as the following pseudo

code:
tmp = al7];
al7] = al6];
al6] = al[5];
alb] = al4];

al4] = al[3] ~ tmp;
al3] = al2] ~ tmp;

al2] = a[1];
al1] = al[0] = tmp;
al[0] = tmp;

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
9

Luffa Specification NIST SHA-3 Proposal (Round 2)

In the following, the matrices representing the message injection functions
MTI for w = 3,4,5 are defined. The way of implementing M only with
XORings and multiplications by 0x02 is shown in Appendix [El

— 'V”m/‘ P.
] ? Q [—H
w2 5

HO-2) 1

QW'lé_’H(I\)N-l

)

N

i-1
HO

256 bits

Figure 2: The round function (The message injection function is for w = 3)

3.2.1 Message Injection Function for w = 3

The matrix representation of the message injection function M1 for w = 3
is defined by

H(()i—1)
Xo 32 2 1 D)
X, | =123 22 Ly |
Xo 2 2 3 4 Hy

M@

where numerics 0x01, 0x02, 0x03, 0x04 correspond to polynomials 1, x, x+1,
22 respectively. The prefix 0x is omitted in order to reduce the redundancy.

Copyright (©2008-2009 Hitachi, Ltd. All rights reserved.
10

Luffa Specification NIST SHA-3 Proposal (Round 2)

3.2.2 Message Injection Function for w =4

The matrix representation of the message injection function M1 for w = 4
is defined by

H(i—l)
Xo 46 6 7 1 H(()H)
X1 | |7 46 6 2 lio1)
X, | 7|67 46 4 e
X, 6 6 7 4 8 Hy
M@

3.2.3 Message Injection Function for w =5

The matrix representation of the message injection function M1 for w =5
is defined by

H(()i—l)
X, OF 08 OA OA 08 01 7l
X 08 OF 08 OA OA 02 1)
X, | =| oa 08 oF 08 oA 04 H%i_l)
X OA OA 08 OF 08 08 Hy
X, 08 OA OA 08 OF 10 H{™Y

M@

3.3 Finalization

The finalization consists of iterations of an output function OF and a round
function with a fixed message 0x00...0. A blank round with a fixed message
block 0x00. . .0 is applied at the beginning of the finalization.

The output function OF XORs all block values and outputs the resultant
256-bit value. Let the output at the ¢-th iteration be Z;, then the output
function is defined by

The detailed output words are defined in Table Bl In fact, Luffa-224 just
truncates the last one word of the output of Luffa-256.

Copyright (©2008-2009 Hitachi, Ltd. All rights reserved.
11

Luffa Specification NIST SHA-3 Proposal (Round 2)

[L
H(N)O — — Q, — Q,
HY —— Ml Q, Ml - Q —+— o
H(N\)N-l _’Qw.l _'Qw-l
ablank round
256 bits
Z —~—
Figure 3: The finalization function
Table 3: The hash values
Hash length n, \ Hash value H ‘
224 Zooll -1 Zos
256 Zooll -1 Zox
384 Zooll - | Zozl| Zroll - | 215
512 Zooll -+ 12071 Z10ll - - - | 217

4 Non-Linear Permutation

In this section, the detailed specification of the permutation); is given.
Some subscripts such as i, j,r will be omitted in this section if it is clear in
the context. For example, aﬁ? is denoted by ay.

4.1 Outline

The Luffa hash function uses a non-linear permutation (); whose input and
output length is 256 bits. The permutation @); is defined as a composition
of an input tweak and iterations of a step function Step. The number of
iterations of a step function is 8 and the tweak is applied only once per a

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
12

Luffa Specification NIST SHA-3 Proposal (Round 2)

(r-1) (r-1) (r-1) (r-1) (r-1) (r-1) (r-1) (r-1)
Lahf [an] [a®) [ah] a0) [a] [aC [

SubCrumb (bit slice) SubCrumb (bit slice)

| MixWord | | MixWord | | MixWord | | MixWord |

Figure 4: The step function

permutation.

At the beginning of the step function process, the 256 bits data stored in
8 32-bit registers is denoted by a,(:) for 0 < k < 8. The data before applying
the permutation (); is denoted by b, and the data after the tweak is denoted
by a,(go). The step function consists of the following three functions; SubCrumb,
MixWord, AddConstant. The pseudo code for @); is given by

Permute(al[8], j){ //Permutation Q_j

Tweak(a) ;

for (r = 0; r < 8; r++){
SubCrumb(a[0],al1],al2],al3]);
SubCrumb(a[5],al[6],al[7],al4]);
for (k = 0; k < 4; k++)

MixWord(alk],alk+4]);

AddConstant(a, j, r);

3

Each function is described below in turn and the tweaks are described in
Section .5l

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
13

Luffa Specification NIST SHA-3 Proposal (Round 2)

4.2 SubCrumb

SubCrumb substitutes I-th bits of ag, aj, as, ag (or a4, as, ag, a7) by an Shbox S
defined by

S[16] = {13,14,0,1,5,10,7,6,11,3,9,12, 15,8, 2, 4}.

Let the output of SubCrumb be zy,x1,x2,x3 (or x4,zs5,26,27). Then the
substitution by SubCrumb is given by

w3 l|agl Tl |zoy = Slasgllazillarl|acy], 0 <1< 32,

zagllzrllzel|zsy = Slaagllarillasil|as], 0 <1< 32.

Note that the latter four words ay, as, ag, a7 are input to the Sboxes in dif-
ferent order from the first four words.

Figure 5: The input and output bits of the Sbox

Appendix [Dl shows the optimal instruction set for Intel Core2 Duo pro-
cessors I,

4.3 MixWord

MixWord is a linear permutation of two words. Figure [0l shows the outline
of MixWord. Let the output words be y, and yx, 4 where 0 < k < 4. Then
MixWord is given by the following equations:

Yk+a = Tpta D Ty,

'Intel is a registered trademark and Core is the name of products of Intel Corporation
in the U.S. and other countries.

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
14

Luffa Specification NIST SHA-3 Proposal (Round 2)

X Xera
WA
(N
IV

™
L/

vd
\

(M
¢V
<<<6,
32 bits
Yk Yi+a —L

Figure 6: MixWord

Y = <Ko,
Ye = Yk D Yrta,
Yktd = Ykya K 02,

Yetd = Yk+a D Yg,
Ye = Y K 03,
Ye = Yk D Yrta,

Y44 K 0y4.

Yk+4

The parameters o; are given by o1 = 2,09 = 14,03 = 10,04 = 1.

4.4 AddConstant
AddConstant is given by
aﬁ = yj(-j",;l) ® cg,;l), k=0,4.

Note that the step constant cgrk_ Y is not equal to 05.7,;1) if 7 # j'. The step

constants are generated sequentially from fixed initial values cg?) and cg.?).

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
15

Luffa Specification NIST SHA-3 Proposal (Round 2)

C(r.1l)_ C(r-l%Q
| i
%<;— C(r.12)
| f |
(r-1)
E i € 4 32 pits
¢), L

Figure 7: Constant generator

The initial values are given in Appendix[Bl The constant generation function

generates two 32-bit constants CE‘TO_ Y and cg.;_l) in the following manner:

r—1 r—1

trlltr = C§,L)||C§‘,R)u

telltr = fo(telltr),

Cg'i(; b o= tr,

telltr = fu(trlltr),

C§T4_l) = 1r,

eller = tallte,

where the function f7 is an LFSR of Galois configuration with defined by
the polynomial g given by
g(z) = 2%+ 2% + 2% 4 2% 4 2% 4+ 2% + 272 + 270 4 2% 4 210 4 2
R R L R R e o A o el S S R

+$18—|—l'17—|—l'12—|—l‘11+ZE10+I7—|—CE3+I2+1.

In order to remove any ambiguity, we also define a step of the constant
generator as the following pseudo code:

c = tl > 31;

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
16

Luffa Specification NIST SHA-3 Proposal (Round 2)

tl (tl << 1) | (tr >> 31);

tr = tr << 1;

if (c == 1){ t1l "= 0xc4d6496¢c; tr "= 0xb55c61c8d; }
SWAP(tl, tr);

step_const[j] [r] [k] = tr; /* k=0,4 */

4.5 Tweaks

For each permutation ();, the least significant four words of a 256-bit input
are rotated j bits to the left in 32-bit registers. Let the j-th block, k-th
word input be b;;, and the tweaked word (namely the input to the first step
function) be ag.?,z, then the tweak is defined by

(0)
3k,
(0)
jk7

)

A:p, = ijf,l, O§k<4,

Aipr = bik(—jmodasz, 4<k<8

5 Optional Usage

Dispite of the size of the outputs being specified in Section B.3] the design
of Luffa allows to generate bit strings of arbitrary length by iterating the
output function OF and the round function Round. This feature is useful for
some applications. On the other hand, it should be pointed out that a longer
output with a small w does not improve the security level.

References

[1] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “Sponge Func-
tions,” Ecrypt Hash Workshop 2007.

[2] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “On the In-
differentiability of the Sponge Construction,” Advances in Cryptology,
Eurocrypt 2008, pp. 181-197, 2008.

[3] National Institute of Standards and Technology, “Secure Hash Stan-
dard,” FIPS 180-2.

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
17

Luffa Specification NIST SHA-3 Proposal (Round 2)

[4]

National Institute of Standards and Technology, “Digital Sigunature
Standard,” FIPS 186-2.

National Institute of Standards and Technology, “The Keyed-Hash Mes-
sage Authentication Code (HMAC),” FIPS 198.

National Institute of Standards and Technology, “Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryp-
tography,” SP 800-56A.

National Institute of Standards and Technology, “Recommendation for
Number Generation Using Deterministic Random Bit Generators (DR~
BGs),” SP 800-90.

National Institute of Standards and Technology, “The Advanced En-
cryption Standard Algorithm Validation Suite (AESAVS)”.

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
18

Luffa Specification NIST SHA-3 Proposal (Round 2)

A Starting Variables

The values are taken from [§] Appendix C.1.

Vo0 = 0x6d251e69, V) ; = 0x44b051e0, V; , = Ox4eaabfbs, V)3 = 0xdbf78465,
Vo4 = 0x6€292011, Vj 5 = 0x90152df4, Vj s = 0xee058139, V7 = 0xdef610bb,

V1,0 = 0xc3b44b95, V; 1 = 0xd9d2£256, V] o = 0x70eee9al, V; 3 = 0xde099fa3,
Vi4 = 0x5d9b0557, V) 5 = 0x8£c944b3, V) s = OxcflccfOe, V} ; = 0x746cd581,

Voo = 0xf7efc89d, Vo, = 0x5dbab781, Vo = 0x04016ce5, Vs 3 = 0xad659c05,
Vo4 = 0x0306194f, V, 5 = 0x666d1836, V5 s = 0x24aa230a, V5 7 = 0x8b264ae7,

Vs = 0x858075d5, Vs = 0x36d79cce, Vi, = 0xe571£7d7, Vi3 = 0x204b1£67,
V3.4 = 0x35870c6a, V35 = 0x57€9€923, V3 5 = 0x14bcb808, V5 7 = 0x7cde72ce,

Vio = 0x6c68e9be, V, | = Oxbecdle22, V), = 0xc825b7c7,V, 3 = Oxaffb4363,
Via = 0x£5d£3999, V) 5 = 0x0£c688f1, V) s = 0xb07224cc, V7 = 0x03e86cea.

B Constants

B—-1 Initial Values

The initial values of the constant generator for @; are taken from [§] Ap-
pendix C.2.

") — 0x181ccab3, c), = 0x380cde06,
) = 0x5b6£0876, |’} = 0x£16£8594,
cy) = 0x7e106ce9, cl) = 0x38979choO,
) — 0xbb62£364,) = 0x92e93c29,
(0) (0)

¢y = 0x9a025047, ¢’} = Oxcf£2a940.

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
19

Luffa Specification NIST SHA-3 Proposal (Round 2)

B2 w=3
ciy = 0x303994a6, i) = 0xe0337818
cily = 0xc0e65299, !} = 0x441ba90d
ciy = 0x6cc33a12,) = 0x7£34d442
ciy = 0xdc56983e, cl) = 0x9389217%
cily = 0x1e00108f, cl!) = OxebaBbce6
ciy = 0x7800423d, i) = 0x5274baf4
o’y = 0x8£5b7882, clf) = 0x26889ba7
cily = 0x96e1db12,) = 0x9a226e9d
¢’y = Oxb6de10ed, !’ = 0x016853d
cil) = 0x70f47aze, c!') = 0x05a17cf4
¢’) = 0x0707a3d4, ¢’] = Oxbd09caca
o’y = Oxlcle8f51, '] = 0x£4272b28
o) = 0x707a3d45, ¢!} = Ox144ae5cc
¢’y = 0xaeb28562, ¢’} = Oxfaa7ae2b
¢’y = Oxbaca1589, c\’] = Ox2e48ficl
o) = 0x40a46t3e, ') = 0xb923c704
chy = 0x£c20d9d2,) = Oxe25e72cl
cil) = 0x34552e25, i) = 0xe623bb72
cyy = 0x7ad8818f, ci| = Ox5c58adal
') = 0x8438764a,) = Ox1e38e2e7
csly = 0xbb6de032, i) = 0x78e38b9d
cyy = 0xedb780c8, cb) = 0x27586719
i) = 0%d9847356,) = 0x36edab7f
¢yl = 0xa2c78434, cY) = 0x703aace?

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
20

Luffa Specification NIST SHA-3 Proposal (Round 2)

B-3 w=4
ciy = 0xb213afas, c) = 0xe028cIbf
¢yl = OxcB4ebe95, i) = 0x44756£91
¢’y = 0x4e608a22, i) = Ox7e8fce32
¢}y = 0x56d858fe, i) = 0x956548be
¢l = 0x343b138f, ¢} = Oxfel91be2
cg?()) = OxdOec4e3d, céa = 0x3cb226e5
¢l = 0x2ceb4882, i) = 0x5944a28e
cif) = 0xb3ad2208, ¢} = Oxalc4c355

B4 w=5
i) = 0x£0d2e9e3, ¢} = 0x5090d577
¢y = Oxac11d7fa, c) = 0x2d1925ab
¢’y = 0x1bcb66£2, ¢} = Oxb46496ac
¢’y = 0x6£2d9bc9, ¢} = 0xd1925ab0
cily = 0x78602649, c\') = 0x29131ab6
¢’y = 0x8edae952, c) = 0x0£c053c3
c{’) = 0x3b6ba548, i) = 0x3£014£0c
¢y = Oxedae9520, ¢} = 0x£c053c31

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
21

Luffa Specification NIST SHA-3 Proposal (Round 2)

C Test Vectors

Let the message M be the 24 bits ASCII string “abc”. Then the resultant
message digest of each algorithm is as follows.

C-1 Luffa-224

The message digest of the message “abc” is

Zoo = 0x£29311b8, Zy; = 0x7e9e40de,
Zp2 = 0x7699be23, Zj3 = Oxfbebbad?7,
Zo4 = Oxcbl6eadf, Z,; = 0x5556d47c,
Zy6 = Oxa40c12ad.

C—2 Luffa-256

The message digest of the message “abc” is

Zoo = 0x£29311b8, Zy; = 0x7e9e40de,
Zp2 = 0x7699be23, 73 = Oxfbebbad?7,
Zy4 = Oxcbl6eadf, Z,; = 0x5556d47c,
Zye = Oxad0cl2ad, Zj; = 0x764a73bd.

C-3 Luffa-384

The message digest of the message “abc” is

Zy,o = 0x9a7abb79, Zj; = 0x7a840e2d,
Zy2 = 0x423c34c9, Zp3 = 0x1£559f68,
Zo4 = 0x09bdb291, Z5 = 0x6fb2e9ef,
Zoe = Oxfec2fala, Zy7; = 0x7a69881b,
Z1,0 = 0xe9872480, Z;; = 0xc635d20d,
Z19 = 0x2fd6e95d, Z;3 = 0x046601a7.

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
22

Luffa Specification NIST SHA-3 Proposal (Round 2)

C-4 Luffa-512

The message digest of the message “abc” is

Zyo = 0x£4024597, Z,, = 0x3e80d79d,
Zy2 = 0x0£4b9b20, Zj 3 = 0x2ddd4505,
Zy,4 = 0xb81b8830, Zj5 = 0x501bea3l,
Zye = 0x612b5817, Z,; = 0xaae38792,
Z1,0 = 0xldcefd80, Z;; = 0x8ca2c780,
Z12 = 0x20aff593, Z;3 = 0x45d6£f91f,
Z14 = 0x0Oeebb2ee, 75 = 0xel13£f0ch,
Z16 = 0xcf22b643, Z;; = 0x81387e8a.

D Implementations of SubCrumb

D-1 For Intel Core2 Processors

The instructions are given by Table 4l At the first, the four words data

Table 4: The instructions set for Intel Core2 processors

cycle
1 MOV r4 rO | OR 0O ri XO0R r2 r3
2 NOT ri1 XOR rO r3 | AND r3 r4
3 XOR r1 r3 | XOR r3 r2 | AND r2 rO
4 NOT rO XOR r2 r1 | OR rl1 r3
5) XOR r4 r1 | XOR r3 r2 | AND r2 ri1
6 XOR rl1 r0

ap, a1, as,az are loaded to the registers r0, ril, r2, r3 respectively. Then
the resultant registers r4, rl, r2, r3provides the outputs of Shox, namely,
To=14, 21 =11, T3 =712, 13 = 13.

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
23

Luffa Specification NIST SHA-3 Proposal (Round 2)

E Implementations of Message Injection Func-
tion M1

The message injection function M I defined in Section 3.2/ can be implemented
only with XORings and multiplications by a fixed constant 0x02.

E-1 w=3

The matrix representation can be transformed as follows:

3 2 21 1 00O 2 2 20 0 0 01
2322 |=10100]® 2220]|d|l 000 2
2 2 3 4 0 01O 22 20 0 0 0 4

In other words, the message injection function M1 for w = 3 can be also
defined by the following equation:

2
X;=H""ae (0xo2 : @H§f1)> ®0x027 - MO, 0<j<3,
§'=0

Figure [§ shows an implementation image of M1 for w = 3.
M
ey pﬂ %
2
HO) ~P X,
S

H(i.l)2
5_& 256 bits
— L

2

Figure 8: The message injection function (w = 3)

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
24

Luffa Specification NIST SHA-3 Proposal (Round 2)

E2 w=14

The message injection function M for w = 4 can be also defined by the
following equations for 0 < j < 4:

3
b = Y (o D).
7'=0
X; = 0x02-7; ®1j—1moda @ 0x027 - M@,

Figure [@ shows an implementation image of M for w = 4.

M(i)

L
ok

y
D

I
3
y
fan

hes

256 bits

D

Figure 9: The message injection function (w = 4)

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
25

Luffa Specification NIST SHA-3 Proposal (Round 2)

E-3 w=5

The message injection function M for w = 5 can be also defined by the
following equations for 0 < j < 5:

4
_ gl (i-1)
n = H @(0x02-@Hj,)
/=0

§ = 0x02:1; @ Njt+1mod s,
X; = 0x02-& DE—1mods D 0x027 - M@,

Figure [0 shows an implementation image of M1 for w = 5.

M(i)

H-D an ;@) @ P x,
0 N N NPASNY,

2 2 X2
HO-1) an | o W S > W r W . X
1 BN @ N @ NPASNY, 1

2 2 X2
HO- D)) | M fa WY B
2 BN @ N @ NPASNY, >

2 2 X2
H-D N fan fan IR
3 BN @ N @ NPASNY, 3

2 2 2
H(i-1z1 AR | . 4,@_,6 X,

? g > 5 5 256 bits
R

2

Figure 10: The message injection function (w = 5)

Copyright (©)2008-2009 Hitachi, Ltd. All rights reserved.
26

	Introduction
	Preliminary
	Notations
	Parameters
	Symbols

	Data Structure
	Iterations

	Chaining
	Message Padding
	Round Function
	Message Injection Function for w=3
	Message Injection Function for w=4
	Message Injection Function for w=5

	Finalization

	Non-Linear Permutation
	Outline
	SubCrumb
	MixWord
	AddConstant
	Tweaks

	Optional Usage
	Starting Variables
	Constants
	Initial Values
	w=3
	w=4
	w=5

	Test Vectors
	Luffa-224
	Luffa-256
	Luffa-384
	Luffa-512

	Implementations of SubCrumb
	For Intel Core2 Processors

	Implementations of Message Injection Function MI
	w=3
	w=4
	w=5

