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Chapter 1

Introduction

This document contains updated specifications of the hash function Hamsi.
Hamsi is a Second Round Candidate of the SHA-3 competition organized by
NIST [1].

There are no tweaks of Hamsi however we update the specification to correct
some parts and to provide a specific parameter for the number of rounds in the
finalization of Hamsi-256 and Hamsi-224, see Table 2.8.

For more information, software/hardware implementations, reference code, sup-
porting document and further improvements and all the changes related to this
document please refer to the NIST submission package and Hamsi website:
http://homes.esat.kuleuven.be/~okucuk/hamsi/
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Chapter 2

Specification

2.1 Introduction

Hamsi is a family of cryptographic hash functions. There are two instances of
Hamsi, Hamsi-256 and Hamsi-512. Table 2.1 summarizes the variants, corre-
sponding parameters and security claims in bits. Hamsi-224 and Hamsi-384 are
very similar to Hamsi-256 and Hamsi-512 respectively. They only differ in initial
values, and a final truncation. Thus, here we will mainly mention Hamsi-256
and Hamsi-512. Unless explicitly mentioned, operations and data structures for
Hamsi-256 and Hamsi-512 apply for their stripped down counterparts, Hamsi-
224 and Hamsi-384 respectively.

At the core of Hamsi are the expansion function and round transformations.
Round transformation operates on a state matrix of 4 rows. The number of
columns is 4 for Hamsi-256, 8 for Hamsi-512. Any entry in the matrix is a word
of 32 bits.

Whenever appropriate, these entries are handled big-endian. But, through-
out the algorithm, very few places operate on bits, and the only places that
require care implementing are the input and output, in which network order
among bytes is assumed, and the bits are numbered starting from the MSB of
each byte. Other than that, most operations are word operations, and work
without the need of endianness conversion within the rounds, even on NUXI
machines. One notable exception is the substitution boxes, where the first row
of the state matrix is considered the LSB, and similarly the fourth, MSB. This
makes a little endian application.

In every round, 4 operations change the matrix. The first is a constant xor
into the whole matrix. The second is a simple xor of round number into the
LSB bits of s[1]. The third is an Sbox substitution, and the fourth is a diffusion
operation on the matrix.

The substitution layer uses a simple Sbox to operate on groups of 4 bits
taken from the same bit position in each 4 rows of the state matrix. The result
is written back into the same bits.
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The diffusion layer operates on 4 words from different positions in the matrix,
and the result is written back to those positions.

Table 2.1: Hamsi variants and security claims
Variant Hash Collision Preimage 2nd-preimage Message size

length resistance resistance resistance per iteration

Hamsi-256 256 128 256 256 32
Hamsi-512 512 256 512 512 64
Hamsi-224 224 112 224 224 32
Hamsi-384 384 192 384 384 64

2.2 The Hash Function Hamsi

2.2.1 General Design

In this section we describe the general design, namely the iteration mode of
Hamsi. Hamsi is based on the Concatenate-Permute-Truncate design strategy
used in several hash functions like Snefru [3] and Grindhal [2]. In addition to
this approach, it uses a message expansion and a feedforward of the chaining
value in each iteration. The non-linear permutation required for the design uses
the linear transformation and one of the Sbox of the block cipher Serpent [4].
General design is shown in Fig. 2.1, but more precisely, Hamsi can be described
as the composition of the following mappings:

Message Expansion E : {0, 1}m → {0, 1}n

Concatenation C : {0, 1}n × {0, 1}n → {0, 1}s

Non-linear Permutations P, Pf : {0, 1}s → {0, 1}s

Truncations T : {0, 1}s → {0, 1}n

T224 : {0, 1}256 → {0, 1}224

T384 : {0, 1}512 → {0, 1}384

Specifications of the mappings for different variants of Hamsi are given in the
following sections. Let (M1||M2||M3|| . . . ||Ml||) be properly padded message,

Table 2.2: Notations
F4 Finite Field with 4 elements
<<< left rotation
⊕ Exclusive or
<< left shift
[n, m, d] Code with length n,

dimension m and
minimum distance d
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then Hamsi variants can be described as follows:
Hamsi-256:

hi = (T ◦ P ◦ C(E(Mi), hi−1)) ⊕ hi−1, h0 = iv256, 0 < i < l (2.1)

h = (T ◦ Pf ◦ C(E(Ml), hl−1)) ⊕ hl−1 (2.2)

Hamsi-224:

hi = (T ◦ P ◦ C(E(Mi), hi−1)) ⊕ hi−1, h0 = iv224, 0 < i < l (2.3)

h = (T224 ◦ Pf ◦ C(E(Ml), hl−1)) ⊕ hl−1 (2.4)

Hamsi-512:

hi = (T ◦ P ◦ C(E(Mi), hi−1)) ⊕ hi−1, h0 = iv512, 0 < i < l (2.5)

h = (T ◦ Pf ◦ C(E(Ml), hl−1)) ⊕ hl−1 (2.6)

Hamsi-384:

hi = (T ◦ P ◦ C(E(Mi), hi−1)) ⊕ hi−1, h0 = iv384 0 < i < l (2.7)

h = (T384 ◦ Pf ◦ C(E(Ml), hl−1)) ⊕ hl−1 (2.8)

m = 32, n = 256, s = 512 for Hamsi-256 and Hamsi-224
m = 64, n = 512, s = 1024 for Hamsi-512 and Hamsi-384.

2.2.2 Initial Values

Inital values are used as the initial chaining value, h0. Hamsi has 4 initial values;
iv256, iv224, iv512, iv384 used in Hamsi-256, Hamsi-224, Hamsi-512 and Hamsi-
384 respectively. Initial values are obtained from the UTF-8 encoding of the text
”Özgül Küçük, Katholieke Universiteit Leuven, Departement Elektrotechniek,
Computer Security and Industrial Cryptography, Kasteelpark Arenberg 10, bus
2446, B-3001 Leuven-Heverlee, Belgium.”

Initial values are obtained in the following manner. The encoding of the
address string is UTF-8. iv224 is the first 256 bits, iv256 is the second 256 bits,
totalling 512. iv384 is the second 512 bits and iv512 is the third 512 bits. The
iv values consist of 32 bit words, each read in a Big endian fashion. Thus, the
first word of iv224 is 0x3c967a67, which is 0x3c96 for ”Ö” UTF-8 encoded, 0x7a
for ”z”, and 0x67 for ”g”, giving us the beginning 4 bytes of the address string
”Özg”.

2.2.3 Message Padding

Hamsi operates on 32 and 64 bit message blocks in Hamsi-256, Hamsi-224 and
Hamsi-512, Hamsi-384, respectively. Message padding is performed as follows;
Append ‘1‘-bit to the message and number of ‘0‘-bits filling the last message
block. Append the message length as 64-bit unsigned integer as the last message
block. Note that Hamsi has maximum message length 264 − 1.
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Figure 2.1: General Design of Hamsi
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Table 2.3: Initial Values of Hamsi
iv224 0x3c967a67, 0x3cbc6c20, 0xb4c343c3, 0xa73cbc6b

0x2c204b61, 0x74686f6c, 0x69656b65, 0x20556e69
iv256 0x76657273, 0x69746569, 0x74204c65, 0x7576656e

0x2c204b61, 0x74686f6c, 0x69656b65, 0x20556e69
iv384 0x656b7472, 0x6f746563, 0x686e6965, 0x6b2c2043

0x6f6d7075, 0x74657220, 0x53656375, 0x72697479
0x20616e64, 0x20496e64, 0x75737472, 0x69616c20
0x43727970, 0x746f6772, 0x61706879, 0x2c204b61

iv512 0x73746565, 0x6c706172, 0x6b204172, 0x656e6265
0x72672031, 0x302c2062, 0x75732032, 0x3434362c
0x20422d33, 0x30303120, 0x4c657576, 0x656e2d48
0x65766572, 0x6c65652c, 0x2042656c, 0x6769756d

2.2.4 Message Expansion

Hamsi uses linear codes [5] for message expansion. The message expansion of
Hamsi-224 and Hamsi-256 expands 32-bit to 256-bit with the code [128,16,70]
over F4. This is defined by E : {0, 1}32 → {0, 1}256, as follows, here and below
G is the generator matrix of the code:

E(Mi) = (Mi × G), Mi ∈ F 16
4

= (m0, m1, . . . , m7), mi ∈ F 32
2

The linear code [128,16,70] can be constructed in several ways, we choose the
one that has a better weight distribution of the codewords. It is obtained by
truncation of two cordinates from each codeword of the best known linear code
[130,16,72] over F4; this can be achieved by truncating the last two columns
from the generator matrix. The linear code [128,16,70] can be constructed by
using Magma [8] as follows:

F < w > : = GF (4); (2.9)

B : = BestKnownLinearCode(GF (4), 130, 16); (2.10)

E : = PunctureCode(C, {129..130}); (2.11)

Note that 83 is an upper bound for the minimum distance of the code [128,16,70]
over F4 [7]. In order to fix the code we give the detailed construction in the
Appendix.
The message expansion of Hamsi-384 and Hamsi-512 expands 64-bit to 512-bit
with the code [256,32,131] over F4 [6]. E : {0, 1}64 → {0, 1}512, defining the
expansion is applied as follows:

E(Mi) = (Mi × G), Mi ∈ F 32
4

= (m0, m1, . . . , m15), mi ∈ F 32
2
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Again we use the best known linear code for the message expansion of Hamsi-
512 (Hamsi-384 respectively). An upper bound for the minimum distance is
168 [6]. The linear code [256,32,131] over F4 can be generated by Magma [8].
Detailed construction is given in the Appendix.
Below we describe the message expansion suitable for software implementation.
Message expansion in detail. Hamsi expansion can be performed in a
method suitable for any arbitrary linear transformation: For every byte of the
input, depending on the position of the byte, a table is generated offline, that
gives an ”output contribution”, that corresponds to the output of the input
where every other byte position is taken as zeroes. During runtime, for every
byte position, the value is looked up from the table corresponding to that po-
sition, and all the ”output contributions” obtained are xored to get the final
output. We perform the expansion in the above mentioned method, but the
effect of it is taken to be the same with the method explained below.
We take as input, 16 (or 32 for Hamsi-512) values from F4. These values, as a
vector are multiplied by the generator matrix (which is 16 × 128 or 32 × 256).
The resulting value is termed M, a vector of 128 (or 256) values from F4. This
is the contribution of the input bytes to the iteration function. These bytes, to-
gether with chain values (of same length) are used to initialize the internal state
of the iteration function. The M vector is used to obtain the vector m (which is
of the same size) by a simple bit permutation. The m vector consists of q words
of 32 bit (4 words for Hamsi-256, 8 for Hamsi-512). As can be seen in Fig. 2.2,
for each i < q, every bit of mi is teamed with the bit in the same position in
mq+i to enter the same Sbox. These couples of bits come from the F4 values in
M. To this effect, Mi and Mq+i are used to obtain mi and mq+i, where all even
positioned bits (e.g. for i < 16, in bit positions 2× i of Mi and Mq+i) are placed
in mi, and all odd positioned bits are placed in mq+i. If we denote the jth bit of
a vector a as a[j], then for 0 ≤ j < 16, mi[j] = Mi[2∗j], mi[16+j] = Mq+i[2∗j],
mq+i[j] = Mi[2 ∗ j + 1], and mq+i[16 + j] = Mq+i[2 ∗ j + 1].

2.2.5 Concatenation

The expanded message words (m0, m1, . . . , mi) are concatenated to the chaining
value (c0, c1, . . . , cj), (i, j = 7, 15) forms an extended state. This is afterwards
input to the nonlinear permutation P . Concatenation method determines the
ordering of the bits (and words) input to P .

In Hamsi-256 and Hamsi-224, C : {0, 1}256 × {0, 1}256 → {0, 1}512 is:

C(m0, m1, . . . , m7, c0, c1, . . . , c7) = (m0, m1, c0, c1, c2, c3, m2, m3, m4,

m5, c4, c5, c6, c7, m6, m7), mi, ci ∈ F 32
2
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(m0, m1, . . . , m7, c0, c1, . . . , c7)
C

m0 m1 c0 c1

c2 c3 m2 m3

m4 m5 c4 c5

c6 c7 m6 m7

Figure 2.2: Concatenation in Hamsi-256 and Hamsi-224

In Hamsi-512 and Hamsi-384, C : {0, 1}512 × {0, 1}512 → {0, 1}1024 is:

C(m0, m1, . . . , m14, m15, c0, c1, . . . , c14, c15) = (m0, m1, c0, c1, m2, m3, c2, c3,

c4, c5, m4, m5, c6, c7, m6, m7, m8,

m9, c8, c9, m10, m11, c10, c11, c12,

c13, m12, m13, c14, c15, m14, m15),

mi, ci ∈ F 32
2

2.3 The Non-linear Permutation P

The non-linear permutation consists of 3 layers; input bits are first xored with
the constants and a counter, this is followed by the application of 4-bit Sboxes
and several applications of the linear transformation L, this is repeated as
many as number of rounds. We represent a state of the permutation with
(s0, s1, s2, . . . , sj), j = 15, 31 and si ∈ F 32

2 , i = 0, 1, . . . , j. This can be visual-
ized with a 4 × 4 and 4 × 8 matrix in Hamsi-256 and Hamsi-512, respectively.

2.3.1 Addition of Constants and Counter

The constants αi ∈ F 32
2 , i = 0, 1, 2, . . . , 31 are xored with the input state before

the substitution layer together with the counter. We use the round number as
the counter c, for the 1st round c = 0 and 2nd c = 1, etc. We use constants to
ensure asymmetry in the same round within the sboxes and the counter in be-
tween the rounds. The constans are permutations of the sequence 0, 1, 2, . . . , 15
(each 4 bits). In Table 2.4 representation of the constants corresponding to the
bitsliced implementation is given.

In Hamsi-256 and Hamsi-224:

(s0, s1, . . . , s15) := (s0 ⊕ α0, s1 ⊕ α1 ⊕ c, s2, . . . , s15 ⊕ α15)
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In Hamsi-512 and Hamsi-384:

(s0, s1, . . . , s31) := (s0 ⊕ α0, s1 ⊕ α1 ⊕ c, s2, . . . , s31 ⊕ α31)

Table 2.4: Constants used in P
α0 = 0xff00f0f0 α1 = 0xccccaaaa α2 = 0xf0f0cccc α3 = 0xff00aaaa

α4 = 0xccccaaaa α5 = 0xf0f0ff00 α6 = 0xaaaacccc α7 = 0xf0f0ff00
α8 = 0xf0f0cccc α9 = 0xaaaaff00 α10 = 0xccccff00 α11 = 0xaaaaf0f0
α12 = 0xaaaaf0f0 α13 = 0xff00cccc α14 = 0xccccf0f0 α15 = 0xff00aaaa

α16 = 0xccccaaaa α17 = 0xff00f0f0 α18 = 0xff00aaaa α19 = 0xf0f0cccc

α20 = 0xf0f0ff00 α21 = 0xccccaaaa α22 = 0xf0f0ff00 α23 = 0xaaaacccc

α24 = 0xaaaaff00 α25 = 0xf0f0cccc α26 = 0xaaaaf0f0 α27 = 0xccccff00
α28 = 0xff00cccc α29 = 0xaaaaf0f0 α30 = 0xff00aaaa α31 = 0xccccf0f0

2.3.2 Substitution Layer

Hamsi uses a 4 × 4-bit Sbox S : F 4
2 → F 4

2 [4]. Hamsi is conveniently designed
for bitslice implementation. There are 128 (or 256 for Hamsi-512) parallel and
identical Sboxes, all can be executed at the same time in computer words of
up to 128 bits (or 256 for Hamsi-512). Hence, if you have registers of size 128
bits, you can make use of it to make Hamsi faster. But registers of 32 bits are
sufficient for the basic implementation.

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

S

Figure 2.3: Sboxes acting over 4-bits over the columns of an Hamsi state.

2.3.3 Diffusion Layer

The diffusion layer of Hamsi is based on the several applications of the linear
transformation L : {0, 1}128 → {0, 1}128 [4]. L operates on 32-bit words; inputs

Table 2.5: Sbox used in Hamsi
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
s[x] 8 6 7 9 3 C A F D 1 E 4 0 B 5 2
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and outputs 4, 32-bit words.

Diffusion in Hamsi-256 and Hamsi-224

(s0, s5, s10, s15) := L(s0, s5, s10, s15)

(s1, s6, s11, s12) := L(s1, s6, s11, s12)

(s2, s7, s8, s13) := L(s2, s7, s8, s13)

(s3, s4, s9, s14) := L(s3, s4, s9, s14)

A0 B0 C0 D0

D1 A1 B1 C1

C2 D2 A2 B2

B3 C3 D3 A3

L

Figure 2.4: Application of L in Hamsi-256 and Hamsi-224.

Diffusion in Hamsi-512 and Hamsi-384

(s0, s9, s18, s27) := L(s0, s9, s18, s27)

(s1, s10, s19, s28) := L(s1, s10, s19, s28)

(s2, s11, s20, s29) := L(s2, s11, s20, s29)

(s3, s12, s21, s30) := L(s3, s12, s21, s30)

(s4, s13, s22, s31) := L(s4, s13, s22, s31)

(s5, s14, s23, s24) := L(s5, s14, s23, s24)

(s6, s15, s16, s25) := L(s6, s15, s16, s25)

(s7, s8, s17, s26) := L(s7, s8, s17, s26)

(s0, s2, s5, s7) := L(s0, s2, s5, s7)

(s16, s19, s21, s22) := L(s16, s19, s21, s22)

(s9, s11, s12, s14) := L(s9, s11, s12, s14)

(s25, s26, s28, s31) := L(s25, s26, s28, s31)

Note that in Hamsi-512 (and Hamsi-384) L is applied 12 times (3 times more
then Hamsi-256). L diffuses over 128-bits and each Hamsi-512 state has 256 bits
in each row of the state matrix, L is applied 3 times more in order to achieve
diffusion in between the two 128-bits. L(s9, s11, s12, s14) and L(s25, s26, s28, s31)
need not be applied in the last round because they are already truncated, see
2.3.4.
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A0 B0 C0 D0

D1 A1 B1 C1

C2 D2 A2 B2

B3 C3 D3 A3

A0 B0 C0 D0

C2 D2 A2 B2

Figure 2.5: Truncation in Hamsi-256 and Hamsi-224

Description of L

a, b, c, d ∈ F 32
2 , L(a, b, c, d):

a := a <<< 13

c := c <<< 3

b := b ⊕ a ⊕ c

d := d ⊕ c ⊕ (a << 3)

b := b <<< 1

d := d <<< 7

a := a ⊕ b ⊕ d

c := c ⊕ d ⊕ (b << 7)

a := a <<< 5

c := c <<< 22

2.3.4 Truncation T

Truncation T : {0, 1}512 → {0, 1}256 in Hamsi-256 and Hamsi-224 is defined as
follows:

T (s0, s1, s2, . . . , s14, s15) = (s0, s1, s2, s3, s8, s9, s10, s11) each si ∈ F 32
2

In Hamsi-512 and Hamsi-384 T : {0, 1}1024 → {0, 1}512 is as follows:

T (s0, s1, s2, . . . , s30, s31) = (s0, s1, s2, s3, s4, s5, s6, s7, s16, s17, s18, s19,

s20, s21, s22, s23) each si ∈ F 32
2

Truncation is applied after the last round of the nonlinear permutation.
Fig. 2.5 shows the state after the application of linear transformation L and trun-
cation. Similar letters corresponds to the words input to L, like L(A0, A1, A2, A3),etc.

2.4 The Non-linear Permutation Pf

P and Pf differs only in the number of rounds and constants. Pf is applied to
the last message block as final transformation.

14



Table 2.6: Constants used in Pf

α0 = 0xcaf9639c α1 = 0x0ff0f9c0 α2 = 0x639c0ff0 α3 = 0xcaf9f9c0
α4 = 0x0ff0f9c0 α5 = 0x639ccaf9 α6 = 0xf9c00ff0 α7 = 0x639ccaf9
α8 = 0x639c0ff0 α9 = 0xf9c0caf9 α10 = 0x0ff0caf9 α11 = 0xf9c0639c

α12 = 0xf9c0639c α13 = 0xcaf90ff0 α14 = 0x0ff0639c α15 = 0xcaf9f9c0
α16 = 0x0ff0f9c0 α17 = 0xcaf9639c α18 = 0xcaf9f9c0 α19 = 0x639c0ff0
α20 = 0x639ccaf9 α21 = 0x0ff0f9c0 α22 = 0x639ccaf9 α23 = 0xf9c00ff0
α24 = 0xf9c0caf9 α25 = 0x639c0ff0 α26 = 0xf9c0639c α27 = 0x0ff0caf9
α28 = 0xcaf90ff0 α29 = 0xf9c0639c α30 = 0xcaf9f9c0 α31 = 0x0ff0639c

2.5 Truncations T224, T384

T224 and T384 defines the truncation method applied to Hamsi-256 and Hamsi-
512 to obtain the digest sizes of 224 and 384 bits.

T224 : {0, 1}256 → {0, 1}224 is defined as follows:

T224(s0, s1, . . . , s7) = T224(s0, s1, s2, s3, s4, s5, s6)

T384 : {0, 1}512 → {0, 1}384 is:

T384(s0, s1, . . . , s15) = (s0, s1, s3, s4, s5, s6, s8, s9, s10, s12, s13, s15)

2.6 Number of Rounds

Number of rounds recommended for the variants of Hamsi is given below. We
would like to stress that number of rounds is the tunable parameter of Hamsi;
it can be decreased to obtain weaker versions and increased in order to achieve
better security as long as the performance values are not changed drastically.

Table 2.7: Number of rounds of permutations P and Pf

Variant Hamsi-256 Hamsi-224 Hamsi-512 Hamsi-384
Rounds of P 3 3 6 6
Rounds of Pf 6 6 12 12
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As an update of Hamsi specification for 2nd round of Sha-3 competition,
we specify 8 as a second parameter for the number of rounds of Pf for Hamsi-
256 and Hamsi-224. Hence, any previous and future cryptanalysis efforts of
finalization is valuable. By proposing 8 as a second parameter we can expect
a slight change in the performance. Below in Table 2.8 we define new variants
named Hamsi-256/8 and Hamsi-224/8 differing only in the number of rounds of
finalization (Pf ) from Hamsi-256 and Hamsi-224 respectively.

Table 2.8: New Variants
Variant Hamsi-256/8 Hamsi-224/8
Rounds of P 3 3
Rounds of Pf 8 8
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Appendix A

Appendix

A.1 Construction of the Linear Code [128,16,70]

over F4

Magma V2.15-12

>

> SetVerbose("BestCode", true);

> SetPrintLevel("Minimal");

> F<w> := GF(4);

>

> C := BestKnownLinearCode(F, 130, 16);

Construction of a [ 130 , 16 , 72 ] Code:

[1]: [4, 3, 2] Cyclic Linear Code over GF(2^2)

Dual of the RepetitionCode of length 4

[2]: [126, 13, 72] Quasicyclic of degree 2 Linear Code over GF(2^2)

QuasiCyclicCode of length 126 with generating

polynomials: w^2*x^62 + w*x^61 + w*x^60 + x^59 + w*x^58 +

x^57 + w*x^56 + x^53 + w*x^52 + w^2*x^50 + x^47 + x^46 +

w*x^45 + w^2*x^44 + w*x^43 + x^41 + x^40 + w*x^38 +

w*x^37 + x^35 + w^2*x^34 + x^33 + x^31 + w*x^30 + w*x^29

+ x^28 + x^26 + x^25 + w^2*x^24 + x^23 + w*x^22 + x^21 +

x^20 + x^18 + w^2*x^17 + w*x^16 + w*x^15 + w*x^13 + 1,

x^62 + x^61 + x^60 + x^59 + w^2*x^58 + w^2*x^57 +

w^2*x^54 + w^2*x^53 + w*x^50 + w^2*x^48 + w^2*x^47 + x^46

+ x^45 + w^2*x^44 + w^2*x^43 + w*x^42 + w*x^41 + w^2*x^39

+ x^38 + w*x^35 + x^34 + w*x^33 + w*x^32 + w*x^31 + x^28

+ w^2*x^26 + x^23 + x^22 + w^2*x^21 + w*x^19 + w^2*x^18 +

x^17 + w*x^16 + x^11 + w*x^10 + w^2*x^8 + w^2*x^7 +

w^2*x^6 + w*x^4 + w*x^3 + x^2 + w*x + w^2

[3]: [126, 16, 70] Quasicyclic of degree 2 Linear Code over GF(2^2)

QuasiCyclicCode of length 126 with generating

18



polynomials: w^2*x^62 + x^61 + x^60 + x^59 + w^2*x^57 +

w^2*x^56 + w*x^55 + x^54 + w^2*x^53 + w^2*x^52 + w^2*x^51

+ w*x^50 + x^49 + w*x^48 + x^46 + w^2*x^43 + w^2*x^41 +

w*x^40 + w*x^39 + x^37 + w*x^36 + w*x^35 + w^2*x^34 +

w*x^33 + w^2*x^31 + w*x^28 + w^2*x^25 + w^2*x^24 +

w^2*x^23 + w^2*x^22 + w^2*x^19 + x^18 + x^17 + w*x^16 +

1, w^2*x^62 + w^2*x^61 + w*x^60 + x^58 + x^57 + w^2*x^56

+ w*x^55 + x^53 + w*x^52 + w^2*x^51 + w*x^50 + x^48 +

x^47 + w*x^46 + w^2*x^45 + w^2*x^44 + w^2*x^43 + w^2*x^42

+ w^2*x^41 + x^40 + w*x^39 + x^38 + x^36 + w^2*x^35 +

w*x^34 + x^33 + w^2*x^31 + x^30 + w*x^29 + x^28 + w*x^26

+ x^25 + x^24 + w^2*x^22 + w*x^21 + w*x^20 + w^2*x^17 +

w*x^16 + w*x^15 + w*x^14 + w^2*x^13 + w^2*x^12 + x^11 +

w^2*x^10 + w^2*x^6 + x^3 + x^2 + x + 1

[4]: [130, 16, 72] Linear Code over GF(2^2)

ConstructionX using [3] [2] and [1]

> E := PunctureCode(C, {129..130});

> E;

[128, 16] Linear Code over GF(2^2)

A.2 Construction of the Linear Code [256,32,131]
over F4

Magma V2.15-12

>

> SetVerbose("BestCode", true);

> SetPrintLevel("Minimal");

> F<w> := GF(4);

>

> C1 := ShortenCode(ReedSolomonCode(63, 33), {12..31});

> C1;

[43, 11, 33] Linear Code over GF(2^6)

> C2 := BestKnownLinearCode(F, 6, 3);

Construction of a [ 6 , 3 , 4 ] Code:

[1]: [6, 3, 4] Linear Code over GF(2^2)

Extend the QRCode over GF( 4) of length 5

> C3 := ConcatenatedCode(C1, C2);

> C3;

[258, 33] Linear Code over GF(2^2)

> E := ShortenCode(PunctureCode(C3, 258), 33);

> E;

[256, 32] Linear Code over GF(2^2)
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