
On the Security of the CCM Encryption Mode

and of a Slight Variant

Pierre-Alain Fouque1 and Gwenaëlle Martinet2 and Frédéric Valette3 and
Sébastien Zimmer1

1 École normale supérieure, 45 rue d’Ulm, 75005 Paris, France
{Pierre-Alain.Fouque;Sebastien.Zimmer}@ens.fr

2 DCSSI Crypto Lab, 51 Boulevard de la Tour-Maubourg F-75700 Paris 07 SP,
France Gwenaelle.Martinet@sgdn.pm.gouv.fr

3 CELAR, 35 Bruz, France Frederic.Valette@dga.defense.gouv.fr

Abstract. In this paper, we present an analysis of the CCM mode of
operations and of a slight variant. CCM is a simple and efficient en-
cryption scheme which combines a CBC-MAC authentication scheme
with the counter mode of encryption. It is used in several standards.
Despite some criticisms (mainly this mode is not online, and requires
non-repeating nonces), it has nice features that make it worth to study.

One important fact is that, while the privacy of CCM is provably garan-
teed up to the birthday paradox, the authenticity of CCM seems to be
garanteed beyond that. There is a proof by Jonsson up to the birthday
paradox bound, but going beyond it seems to be out of reach with cur-
rent techniques. Nevertheless, by using pseudo-random functions and not
permutations in the counter mode and an authentication key different
from the privacy key, we prove security beyond the birthday paradox.

We also wonder if the main criticisms against CCM can be avoided: what
is the security of the CCM mode when the nonces can be repeated, (and)
when the length of the associated data or message length is missing to
make CCM on-line. We show generic attacks against authenticity in these
cases. The complexity of these attacks is under the birthday paradox
bound. It shows that the lengths of the associated data and the message,
as well as the nonces that do not repeat are important elements of the
security of CCM and cannot be avoided without significantly decreasing
the security.

Keywords: CCM, CBC-MAC, Counter mode

1 Introduction

CCM stands for CTR + CBC-MAC and has been proposed by Doug Whiting,
Russ Housley and Niels Ferguson. It is an authenticated encryption scheme based
on the MAC-then-encrypt generic construction. It is interesting since it uses two
very popular symmetric key schemes which are implemented in a lot of products
and so, CCM can be constructed using “on the shelf” functions. It is used in
many standards of wireless networks such as IEEE 802.11 [22] (WiFi), IEEE

802.15.40 (Wireless Personal Area Network/ZigBee), standards of the internet
in the RFC 3610 and RFC 4309 and finally in the NIST SP 800-38C [10].

The security of CCM is very interesting since it relies on some padding or
formatting functions. Such requirements are not appreciated in general and cryp-
tographers try to avoid such properties: for example, the security should not
hold only because the length of the message is included in some message block.
However, such specific requirements have been used before to construct hash
function as in the Merkle-Damgard transformation of compression function to
hash function or in order to make secure the CBC-MAC function for messages of
arbitrarily length. It is a well-known property that messages that include their
length in the first block are prefix-free and such property can be used to avoid
classical attacks on the CBC-MAC.

CCM has also been criticized by some authors [19] who highlight three ef-
ficiency issues: “CCM is not on-line, CCM disrupts word-alignment, and CCM
can’t preprocess static associated data”. The main issue is that CCM is not
on-line since the sender has to know the length of the message before the be-
ginning of the encryption. The two other critiques concern the associated data.
Consequently, we have tried to see whether such criticisms can be avoided in the
attack part of this paper.

1.1 Related Works

The security notions of symmetric encryption schemes have been intensively
explored [2, 3, 5, 9, 14] and are now well understood. This background has al-
lowed to design and analyze several operating modes [2, 15, 17, 7] for symmetric
authenticated encryption.

In this vein, two main authenticated encryption schemes with associated
data were designed: AEX [7] and CCM [21]. They both are two-pass modes with
non-repeating nonces and they both have been proved secure [12, 7] until 2n/2

encryption queries for privacy and integrity. This bound is a classical bound
and an encryption scheme secure up to this bound is commonly considered as
secure. According to Jonsson, the privacy of CCM cannot be proved beyond the
birthday paradox. However maybe the scheme is a good authentication scheme
beyond this bound. At the end of his paper, Jonsson explains that if the CCM
security is guaranteed until 2n/2 encryption queries, no attack which reaches
this bound is known. Jonsson left as an open problem to fill the gap between
the better known attack in 2n encryption queries and this security bound. More
precisely, he conjectures a security in 2n encryption queries.

1.2 Our results

The first part of our result concerns the presentation of an encryption scheme
secure beyond the birthday paradox bound. We rely on CCM and propose a
slight variant of the CCM mode for which we are able to give a security proof
beyond the birthday paradox for privacy and authenticity. We do not alter CCM
too much to preserve some interesting properties. Precisely, we replace the block

2

cipher used in the counter mode with a pseudo-random function. If one wants
to base the security of the scheme on block cipher security, this pseudo-random
function can be built using several block ciphers such as in [4, 11, 16]. Another
alternative is to use the compression function of a hash function, where the key
takes the place of the IV. This solution relies on the non classical assumption,
that the compression function is a good pseudorandom function. However this
assumption is more and more common [1, 8] and is realistic. The privacy proof
is a consequence of the privacy of the counter (CTR) mode when it is used with
a random function. The authentication proof is built upon a method from [15]
using the fact that with CTR, the encryption of the tag cannot be distinguished
from a random bit string. Therefore one does not have to generate the tag to
simulate the encryption.

In the second part of this paper, we try to justify why the non-repeating
nonces and the length of the message and of the associated data are required
for the security of CCM. All the attacks do apply to CCM and to the modified
version that we propose, but we focus on the consequences for CCM, since CCM
is standardized. We exhibit three attacks against the authenticity of the scheme.
We, among others, worry about the “non-repeating” feature of the nonces. In a
two party setting, it is easy to check such requirement since the two parties can
maintain a counter. However, when several parties want to communicate to each
other using the same key, it is difficult to maintain a global variable distributed
among the participants. Consequently, the security of CCM with random nonces
is an important issue.

In our first attack, we show a generic attack that requires 2(ℓ+t)/2 + 2ℓ en-
cryption messages, where ℓ is the nonces length and t is the length of the MAC.
This attack is more theoretical than practical but it shows that the expected
security bound of 2n cannot be reached with random nonces.

Our second attack shows that when random nonces are used and when the
length of the associated data is missing, 2ℓ/2 encryption queries allows to forge
a valid encrypted message (note that in practice ℓ < n). It implies that if one
want to remove the length of associated data to be able to preprocess static
associated data, then one decreases CCM security under the proven birthday
paradox bound.

Finally, our third attack shows that if random nonces are used and if the
length of the message is not included in the padding function, then the au-
thenticity of the scheme can be broken using 22ℓ/3 queries. It implies that if
ℓ ≤ 3n/4 = 96 (which is realistic) and one wants to be able to make on-line
encryption, then one decreases the security of CCM under the birthday paradox
bound once more.

These attacks show that the security of CCM relies on the non-repeating
nonce property and on the length of the message and of the associated data that
is added before the message and make them prefix-free. This property is very
useful to design secure encryption and authenticated schemes.

3

1.3 Organization

In section 2, we describe the CCM authenticated encrypted scheme. Then, we
show our security proof beyond the birthday paradox for the authenticity and
privacy in section 3. In Section 4, we describe some attacks that show why the
non-classical assumptions, non-repeating nonces and prefix-free messages are
important.

2 Security Notions

In the sequel, we briefly recall the basic security notions for blockciphers, pseu-
dorandom functions, and symmetric encryption schemes. For the latter, we are
interested into the integrity (we indistinctly use the words integrity and authen-
tication in the sequel) and the privacy. The definitions we use are derived from [2,
5].

Conventions When an adversary A can interact with an oracle O and at the
end of the interaction outputs b, it is denoted by AO ⇒ b. If B and C are
two events, the probability that the event B occurs, knowing the event C is
denoted by Pr[B|C]. When an adversary is involved in an event, the probability
is considered upon the adversary random coins.

Let S be a set of bit strings and let x and x′ be a couple of bit strings from
S, we denote by x ⊂ x′ the fact that x is a prefix of x′. The set S is prefix-
free if for all couples (x, x′) ∈ S2, x ⊂ x′ implies that x = x′. An adversary is
said prefix-free if the set of the queries that it made to all the oracles, forms a
prefix-free set. Finally, we denote by lsbk (x) the k least significant bits of x.

2.1 Pseudorandom Functions and Pseudorandom Permutations

Pseudorandom Permutations Let E : {0, 1}k × {0, 1}n → {0, 1}n be a per-
mutation family. We denote by Sn the set of all the permutations from {0, 1}n

to {0, 1}n. The goal of a prp-adversary A, which runs in time T , against E is
to guess the value of b in the following game. The challenger chooses a bit b at
random; if b = 1 he assigns π to a random permutation from Sn otherwise he
chooses a random key K in {0, 1}k and assigns π to E(K, ·). The adversary can
interact with π making up to q queries xi and receives π(xi). The prp-advantage
of A, denoted adv

prp

E (A), is:

∣

∣

∣
Pr
[

AE(K,·) ⇒ 1|K
$
← {0, 1}k

]

− Pr
[

Aπ(·) ⇒ 1|π ← Sn

]∣

∣

∣
.

Pseudorandom Functions Let F : {0, 1}k × Dom → {0, 1}t be a function
family. We denote by Rand the set of all the functions from Dom to {0, 1}t. The
goal of a prf-adversary A, which runs in time T , against F is to guess the value
of b in the following game. The challenger chooses a bit b at random; if b = 1

4

he assigns f to a random function from Rand otherwise he chooses a random
key K in {0, 1}k and assigns f to F (K, ·). The adversary can interact with f
making up to q queries xi and receives f(xi). The prf-advantage of A, denoted
adv

prf

F (A), is:
∣

∣

∣
Pr
[

AF (K,·) ⇒ 1|K
$
← {0, 1}k

]

− Pr
[

Af ⇒ 1|f ← Fd,n

]

∣

∣

∣
.

IfA is restricted to be prefix-free then its prf-advantage is called pf-prf-advantage
and is denoted adv

pf-prf
F (A).

2.2 Integrity

The security notion we use to define authenticity for a symmetric encryption
scheme is the integrity of the ciphertext (denoted INT-CTXT). Formally, in the
integrity game, the adversary A is given access to an encryption oracle E(·) and
a verification oracle VO(·) it can feed with queries of his choice. The encryp-
tion oracle encrypts the plaintext and answers by the corresponding ciphertext.
The adversary feeds the verification oracle with a ciphertext, also called forgery
attempt in the sequel, and the oracle answers 1 if the ciphertext is valid and 0
otherwise. The adversary goal is to generate a valid ciphertext (that is accepted
by the verification oracle) which is different from all ciphertexts previously gen-
erated by the encryption oracle. Note that the adversary can send several queries
to the verification oracle. The success probability of A is:

Succ
int-ctxt
CCM (A) = Pr[VO(C)⇒ 1|AE(·),VO(·) ⇒ C].

2.3 Privacy

The security notion used to define privacy for a symmetric encryption scheme is
the indistinguishability security under chosen plaintext attacks (denoted IND-
CPA). Formally, in the privacy game an adversary A is given access to an en-
cryption oracle E(·) it can feed with queries of the form (M0, M1) where M0 and
M1 are messages of his choice. At the beginning of the game this oracle chooses
a bit b and always encrypts the message Mb. The adversary’s goal is to guess
b, that is to say to distinguish the two cases. The indistinguishability is defined
in the “left or right model” which has been introduced and proved to be the
strongest one in [2]. The advantage of A is:

adv
ind-cpa
CCM (A) =

∣

∣

∣
Pr[AE(·) ⇒ 1|b = 1]− Pr[AE(·) ⇒ 1|b = 0]

∣

∣

∣
.

3 CCM description

In this part, we describe the original CCM authenticated encryption mode and
the format of its various inputs. In [21] recommendations are also given on various
choices that have to be made to implement CCM: unique key for both the CBC
chain and the counter mode, nonces that cannot be repeated. . . Some of these
restrictions can be ignored without any security problems although some other
are needed for security reasons. At the end of this part we discuss these choices.

5

3.1 Notations

In this paper, the following notations will be used:

– for any string or integer x, |x|2 denotes its bit length, |x|8 =
⌈

|x|2
8

⌉

its octet

length, and [x]s denotes the binary representation of x on s bits;

– E is a block cipher with n-bit blocks and k-bit keys, where n = 128;

– M is a plaintext, consisting of blocks of n bits denoted M1, . . . , Mm−1 and
a last block Mm with at most n bits.

– the associated data (data which is authenticated and not encrypted) is de-
noted by D1, . . . , Da and consists in a− 1 blocks of n bits and one block of
at most n bits;

– the ciphertext C consists in m + 1 blocks C0, C1, . . . , Cm where Ci is n-bit
long for 0 ≤ i ≤ m− 1 and Cm is at most n bits;

– B = B0, B1, . . . , Br is the n-bit long formatted input used for the CBC-MAC
computation, B0 is called the pre-initial value;

– A0, A1, . . . , Am are the inputs for the counter mode;

– the nonce used to derive the pre-initial value B0 and the counter values
A0, A1, . . . , Am is denoted by N . This nonce is ℓ-bit long, with 7 ≤ ℓ/8 ≤ 13
(ℓ has to be divisible by 8);

– q is an integer such that 2 ≤ q ≤ 8 and q + ℓ/8 = 15, let Q denotes the
bit representation of the octet length of the message M over q octets, i.e.

Q =
[

|M |8
]

8q
;

– t denotes the bit length of the MAC, it has to be divisible by 16, and 4 ≤
t/8 ≤ 16.

3.2 CCM mode

The CCM mode can be basically viewed as an authenticate-then-encrypt com-
position instantiated with a CBC-MAC and a counter mode. The mode uses a
block cipher E both in the CBC chain and in the counter mode. The block length
is equal to n = 128 bits. We denote by K the key used in the CBC-MAC and
by K ′ the one used in the counter mode. The choice of K and K ′ is discussed
in section 3.4.

Let M = M1‖M2‖ . . . ‖Mm be a plaintext and D = D1‖D2‖ . . . ‖Da associ-
ated data that will only be authenticated and not encrypted.

At first, the encryption box chooses a nonce N of ℓ bits. This nonce will
be used to derive both the pre-initial value for the CBC-MAC and the counter
blocks.

In a first step, the associated data and the plaintext blocks are authenti-
cated. This consists in computing their CBC-MAC value. This computation is
however quite different from the classical one: it authenticates a formatted input
B = B0‖ . . . ‖Br derived from N , M , and D. The format of B is described in
section 3.3. The 1-block pre-initial value B0 is treated as the first message block

6

?

?

?

f f-

?

?

? f

?

?

?

- f

?

?

?

--

f

?

? - f

?

? - f

?

?

?

-

C0 C1 C2 C3

M1 M2 M3

T1 T2 M1 M2 M3

A0 A1 A2 A3

X1 X2 X3

EK′ EK′ EK′ EK′EK EK EK EK

B0

T3

Fig. 1. CCM authenticated encryption mode.

in the CBC chain. Its main property is that it contains the tag length, the plain-
text length and the nonce value. The CBC-MAC is a simple CBC chain without
retail. Its output is denoted T and is t-bit long, with 32 ≤ t ≤ n.

In a second step, the MAC value T and the plaintext M are concatenated and
encrypted with a counter mode. The inputs for the counter mode are blocks of
n bits denoted A0‖A1‖ . . . ‖Am. Their format is described in section 3.3. Briefly,
each one contains some flag information, the nonce value, and the index of the
plaintext block. The tag T is encrypted as C0 = lsbt (EK′(A0)) ⊕ T and for all
plaintext blocks Mi, 1 ≤ i ≤ m, Ci = EK′(Ai)⊕Mi.

The ciphertext C = C0‖C1‖ . . . ‖Cm and the associated data D are then
transmitted. The nonce value is transmitted if necessary (in case of non syn-
chronizing).

Figure 1 describes the CCM mode for 3-block plaintexts and no associated
data.

The decryption process consists in decrypting C with the counter mode and
then to compute the tag T ′ with the formatted input B computed from the
nonce N , the associated data and the recovered plaintext. If valid, the plaintext
is returned. Otherwise an error message is given. For a description of CCM
encryption and decryption algorithms in pseudo-code, see appendix A.

3.3 Formatting the inputs

The specification [21] precisely describes the format for the different inputs.
The CBC-MAC chain uses a formatted input B = B0, . . . , Br. The n-bit

pre-initial value B0 is determined by a nonce of ℓ bits, and various information.
The first octet is a flag one containing one bit for future extension, one bit to
indicate whether associated data are present or not, three bits to indicate the
octet length of the MAC value (which is necessarily different from 000) and
three bits for the octet length of the binary representation of the octet length
of the plaintext M . The remaining octets contain the nonce value followed by

7

0 if no associated datas
1 otherwise

@
@

@
@@

�
�

�
��

6

6

Q: bit representation
of the octet length of M

Nonce N
on ⌈ℓ/8⌉ octets

Flags on
1 octet

[(t − 2)/2]3 [q − 1]3

First bit reserved for future usage

Fig. 2. The format of the pre-initial value B0 for the CBC-MAC.

the value q, the bit representation of the octet length of M . Picture 2 represents
the format of B0. Note that a collision on the B0 values occurs if and only if the
nonces collide, associated data are either used or not for both and the plaintexts
are of the same octet length.

If there are authenticated data then let B1‖ . . . ‖Bu be the concatenation of
a particular encoding of the D size (for more details see [21]), of D, and of as
few ’0’ as possible such that the resulting bit string can be partitioned into n-bit
blocks (if there is no authenticated data B1‖ . . . ‖Bu is the empty bit string).
Let Bu+1‖ . . . ‖Br be the concatenation of M and of as few ’0’ as possible such
that the resulting bit string can be partitioned into n-bit blocks. Remark that
the encoding of B is made in such a way that the set of all possible formatted
inputs B is prefix-free !

Finally, the inputs for the counter mode A0, A1, . . . , Am are encoded as fol-
lows: the first octet contains some flag information (2 bits reserved for a future
usage, three bits fixed to 000 and three bits containing the binary representa-
tion of q − 1). The remaining ones contain the nonce value, already used for
formatting B0 and the block number.

3.4 NIST requirements

The CCM specification [21] gives indications to guide implementation choices.
Of course, CCM should be used with the AES so the key length is either 128,
192, or 256 bits. The block length is 128 bits.

The CCM specification also provides a requirement for the key choice. Indeed,
the same key should be used for both the CBC-MAC and the counter mode. Such
a choice is of course debatable since it goes against the common sense based on
the key usage separation. However, the security proof given by Jonsson in [12]
is made for this case and ensures that CCM provides privacy and authenticity
up to 2n/2 block cipher calls. Thus, choosing the same key for the two modes
combined in CCM is not a security concern since the security bound is very close
to the one given for a lot of other authenticated encryption modes [18, 13].

8

However, even if this requirement is quite understandable in case of same
security results, it becomes cumbersome if the security with two keys is much
better than for a single key. In our modified CCM we can achieve a much better
security with two keys. That is why in section 4, we focus on the security results
for our modified CCM in case of non repeating nonces with two different keys.

Another requirement made in the CCM specification concerns the choice
of the nonce values. It is explicitly defined that “the counter blocks must be

distinct within a single invocation and across all other invocations of the CTR

mode under any given key”. This is done by imposing non-repeating nonces.
This requirement is here largely understandable: indeed, a collision on the nonce
values can often be exploited to forge a valid ciphertext or to attack the privacy
of the scheme. However, in practice, non repeating nonces could be very difficult
to handle, particularly in a scenario where three or more users share the same
key used with CCM. Thus, it can be interesting to carefully look at the CCM
security when nonces are randomly chosen and can thus collide. This is done in
section 5.

4 Modified CCM

4.1 Description

In this section we propose a modified version of CCM (mCCM) which we prove
secure beyond the birthday paradox bound. The main difference between the
original and the modified CCM versions is the use of a pseudorandom function
to encrypt the tag and the message. Let F be a pseudorandom function family
from {0, 1}n to {0, 1}n, E a blockcipher over {0, 1}n and let K and K ′ be two
keys chosen independently.

To encrypt a message M, D, a nonce is chosen, the corresponding formatted
input is deduced and a CBC-MAC tag T is computed with the blockcipher
EK . Then, the ciphertext is computed as C0 = T ⊕ lsbt (FK′(A0)) and Ci =
Mi ⊕ FK′(Ai).

The decryption process consists in decrypting C with the counter mode and
then to compute the tag T ′ with the formatted input B′ computed from the
nonce N , the associated data and the recovered plaintext. If valid, the plaintext
is returned. Otherwise an error message is given.

We remind that in this modified version, as in the original version, we impose
non repeating nonces. This implies that adversaries against modified CCM can
choose the nonce to encrypt a query, as soon as, any new nonce is different
from all the previous one. However, for the verification queries the adversary is
allowed to use a nonce which was already used in a previous encryption query.

In the following we prove the IND-CPA and INT-CTXT security of this
modified version of CCM. Note that as proven in [5] these two security notions
imply the IND-CCA security (with a tight reduction), which means that this
protocol achieves the best security levels for privacy and for integrity (see [5] for
precise definitions and relations between these notions).

9

4.2 Privacy

The modified CCM privacy is a direct consequence of the privacy of CTR using
a pseudorandom function. This security result has been stated in [2]:

Theorem 1 (BDJR). Suppose F is a PRF family from {0, 1}n to {0, 1}n.

Then, for any adversary A against privacy of CTR mode, with running-time T ,

and which can do at most qe encryption queries of at most s blocks, there exists

a prf-adversary A′ against F with running time T and which can make at most

sqe queries, such that:

adv
ind-cpa

CTR (A) ≤ adv
prf

F (A′) .

The security of mCCM is an easy consequence of this theorem:

Theorem 2. Suppose F is a PRF family from {0, 1}n to {0, 1}n. Then, for any

adversary A against privacy of modified CCM mode, with running-time T , and

which can do at most qe encryption queries of at most s blocks, there exists a

prf-adversary A′ against F with running time T and which can make at most

(s + 1)qe queries, such that:

adv
ind-cpa

mCCM (A) ≤ adv
prf

F (A′) .

4.3 Integrity

To prove the integrity of ciphertexts (INT-CTXT) in modified CCM, we need
the two following results. The first one is shown in [6] and upper bounds the
advantage of a pf-prf adversary against CBC-MAC.

Theorem 3 (BPR). Let A be a prefix-free prf-adversary against the n-bit block

CBC-MAC, A can make at most q ≥ 2 queries of at most s blocks and has a

running-time of at most T . Then we have:

adv
pf-prf

CBC-MAC (A) ≤
sq2

2n

(

12 +
64s3

2n

)

.

The second result comes from [3] and shows that if a protocol is INT-CTXT
secure against an adversary which can make at most one verification query, then
it is secure against adversaries which can make several verification queries.

Lemma 1. Let A be an adversary against the authenticity of a symmetric en-

cryption schemes Π. Assume that A makes at most qe encryption queries and

qv verification queries all of at most s blocks. Then there exists an adversary A′

against the authenticity of Π, such that A′ makes at most qe encryption queries

and 1 verification queries, all of at most s blocks and:

Succ
int-ctxt
Π (A) ≤ qv · Succ

int-ctxt
Π (A′) .

The adversaries A and A′ have the same running-time.

10

Thanks to these results, we can upper bound the advantage of any adversary
against the INT-CTXT of mCCM.

Theorem 4. Let A an adversary against the authentication of mCCM, with

running-time at most T , which can make at most qe encryption queries of at

most s blocks and qv verification queries of at most s blocks. Then its success

probability is upper bounded by:

Succ
int-ctxt
mCCM (A) ≤ qv

(

48(s + 1)

2n
+ 256

(

(s + 1)2

2n

)2

+
1

2t

)

+adv
prf

F (A1) + adv
prf

E (A2) ,

where A1 is a prf-adversary against F with running-time at most T , which can

make at most (s + 1)(qe + qv) queries and A2 is a prp-adversary against E with

running-time at most T , which can make at most (s + 1)(qe + qv) queries.

Proof. The following proof is a game-based proof. In the first game (game 1)
the adversary faces the verification and encryption oracles which are simulated
respecting strictly the protocol. In each new game we alter a bit the way we
simulate the two oracles, so that in the last game we are able to upper bound
the adversary success probability. Since we alter the simulation between two
games, the adversary success probability is modified, so we have to upper bound
this modifications; this upper bound is called the distance between two games.
See [20] for details.

In the games 2 and 3 we replace successively the PRF F and the PRP E with
respectively a true random function and a true random permutation. One can
easily shows that there exists two adversaries A1 and A2 as stated in the theorem
such that the distances between the games can be upper bounded respectively
by adv

prf

F (A1) and adv
prf

E (A2).
Let A3 be the adversary against the authenticity of mCCM in the game 3,

it can make qe encryption queries and qv verification queries, all of at most s
blocks. Let A′ be an adversary against the authenticity of mCCM which makes
qe encryption queries of at most s blocks and 1 verification query of at most
s blocks such that Succ

int-ctxt
mCCM (A3) ≤ qv · Succ

int-ctxt
mCCM (A′) (it exists thanks to

lemma 1). To upper bound the success probability of A3, we upper bound the
success probability of A′. For this, thanks to A′ we construct D a prefix-free
prf-adversary against CBC-MAC with 2 MAC queries of at most s blocks, and
then relate the success probability of D with the one of A′.

As described in the prf security definition, the prf-distinguisher D faces a
CBC-MAC oracle. To construct D, we run A′ and to every of its encryption
query (N i, M i, Di), we answer:

– ⊥ if there exists k < i such that N i = Nk,

– (N i, Di, Ci = Ci
0‖ . . . ‖Ci

mi
) with Ci

0
$
← {0, 1}n, Ci

k = M i
k ⊕ F (Ai

k).

To A′ verification query (N, D, C = C0‖ . . . ‖Cm), we answer:

11

– if N 6= Nk for all k ≤ qe, then we choose randomly a t-bit string T and
compute the m-block message M with Mi = Ci ⊕ F (Ai) ; we give B, where
B is the corresponding formatted input, to the CBC-MAC verification oracle
which answers with T ′ and we reply to A′ with 1 if and only if T = lsbt (T ′),

– if there is k ≤ qe such that N = Nk, D = Dk, and C = Ck, then we answer
⊥,

– if there is k ≤ qe such that N = Nk, but D 6= Dk or C 6= Ck, then, we
compute the message blocks Mi = F (Ai) ⊕ Ci, deduce the corresponding
formatted input B; we send the kth formatted input Bk (from the kth en-
cryption query) to the CBC-MAC oracle and receives the corresponding tag
T k; then we compute the tag of B: T = lsbt

(

T k
)

⊕ C0 ⊕ Ck
0 ; finally we

send B to the CBC-MAC oracle, receives back T ′, check if T = lsbt (T ′) and
forward the answer to A′ (Note that since D 6= Dk or C 6= Ck, B 6= Bk and
since the formatted inputs form a prefix-free set, the two queries made to
the CBC-MAC oracle are prefix-free).

At the end, D decides that it faces a true CBC-MAC oracle if the answer to the
A′ verification query is equal to 1.

As soon as the nonces are different from each other, for a mCCM attacker
the Ci

0 are randomly distributed, therefore the answers to A′ are well simulated.
Since there is no collision between the nonces, the probability of success of A′ is
exactly the probability that D outputs 1 when it faces a true CBC-MAC oracle.
When D faces a random function, its success probability is 1/2t, therefore we
have:

Succ
int-ctxt
mCCM (A′) ≤

1

2t
+ adv

pf-prf
CBC-MAC (D) .

We remind that pf in pf-prf stands for prefix-free. Theorem 3 allows us to con-
clude. ⊓⊔

In practice, we can consider that s ≤ 240 − 1 (in fact this is probably still a
large upper bound of s). In the following, we omit the PRF and PRP advantages
for simplicity reasons, since these terms are identical in the two bounds. Let
assume that t ≥ 82, previous theorem gives an upper bound of the integrity
adversaries of qv ·2

−80. For the same values, Jonsson theorem [12] gives a security
of approximately (qv + qe)

2 · 2−48. Remark that for a value of t = 82, our bound
is tight since the simple attack which consists in trying to guess the CBC-MAC
value has a success probability of qv/2t = qv · 2

−82.

5 Random nonces

In this part we consider that the nonces used for the CCM mode are chosen at
random in {0, 1}ℓ. In this case, collision between two random values are possible
and such an event can be exploited by an adversary to forge a valid ciphertext. Of
course, confidentiality cannot be ensured as soon as two nonces collide. Indeed,
if such a collision occurs, the adversary can easily distinguish which plaintext is
encrypted and then break the scheme in the sense of semantic security. However,
forging a valid ciphertext, i.e. breaking the ciphertext unforgeability, is a different

12

task. Attacking the privacy is independent and does not imply any weakness on
the integrity, even if, when one is compromised, the other often too. However,
the technique used here to forge a valid ciphertext is completely different from
the one used to break the semantic security in case of collision between nonces.

Note that the following attacks do apply to both original CCM and modified
CCM, as long as the nonces are random. We focus our analyze to CCM because it
is a standard, but the same conclusions could be stated for the modified version of
CCM. Besides, remark that the security model is slightly different from previous
section. As the nonce may repeat, the adversary can make as many queries as it
wants, whereas in previous section the adversary was restricted to 2ℓ encryption
queries, the number of possible nonces. However, when in previous context the
nonces used for encryption queries can be chosen by the adversary, as long as
there are all distinct, in this context the nonces are chosen randomly by the
challenger.

5.1 Generic Attack

We present in this subsection a generic attack against original and modified
CCM, assuming only that the nonces may collide. The complexity of this attack
is O(2ℓ + 2(t+ℓ)/2) encryption queries and one verification query, where t is the
tag bit size and ℓ the nonce bit size, and its success probability is very close to 1.
Let M3 be a message block and (M i

1, M
i
2)i be a set of 2(t+ℓ)/2 2-block messages.

The adversary makes the 2(t+ℓ)/2 encryption queries (M i
1, M

i
2, M3) and receives

the answer N i, (Ci
0, C

i
1, C

i
2, C

i
3). With high probability, there are two different

indexes i and k such that N i = Nk and Ci
0 = Ck

0 . Since the nonces are the
same, the counter values used for the encryption are the same and thus, since
the encryptions of the tags are the same, there is a collision between the two
tags. Since the last block of the two messages are the same, it means that the
collision appears in fact before the last block and thus CBC(B0‖M

i
1‖M

i
2‖M

′
3) =

CBC(B0‖M
k
1 ‖M

k
2 ‖M

′
3) for any n-bit block M ′

3 (note that the collision between
the nonces implies a collision between the B0 values since the plaintexts are
of the same octet length). Let M ′

3 6= M3 and let repeat O(2ℓ) times the en-
cryption query M i

1‖M
i
2‖M

′
3 until the answer involves the nonce N i. Let denote

C0, C1, C2, C3 the corresponding ciphertext, and let C′
0 = C0, C′

1 = C1 ⊕M i
1 ⊕

Mk
1 , C′

2 = C2 ⊕M i
2 ⊕Mk

2 , and C′
3 = C3. The ciphertext Nk, (C′

0, C
′
1, C

′
2, C

′
3) is

valid for the message Mk
1 ‖M

k
2 ‖M

′
3 (message which was not previously asked).

Note that in the case when t ≤ ℓ this attack requires O(2ℓ) encryption
queries, 1 verification query, all of at most 3 blocks. Therefore if theorem 4 would
apply, the success probability of such an adversary would be upper bounded by
29−n + 2−t, whereas it is nearly equal to 1. If this attack is not practical, it
illustrates the fact that allowing random nonces strongly decreases the security
of CCM.

13

f

?

?

? f

?

?

?

--

f

?

? - f

?

? - f

?

? - f

?

?

?

-

C′
0 C′

1 ⊕ C0 ⊕ C′
0

M1 M2 M3

C0 ⊕ C′
0

⊕M3

T2 T3
C0 ⊕ C′

0

⊕M3

A0 A1

X3 X3

EK′ EK′EK EK EK EK EK

B0

T3

Fig. 3. Forgery attempt: C0 ⊕ C′
0 equals T2 ⊕ T3.

5.2 If the Data Length was not Precised

In previous attack we have relieved the constraint that nonces should not collide.
In the two following attacks, we still allow the nonces to collide and in addition
we assume that the formatted inputs do not form a prefix-free set. We show
that, in this case, the attacks can be even worse than the previous one.

We remind that in CCM, B0 depends on the message length but not of the
associated data length (however if there are associated data, a flag bit is set to 1).
If there are associated data, their length is encoded at most on the 10 first blocks
of B. Since the length of the associated data must be known to authenticate,
the authentication cannot be done online and this reduce CCM efficiency. For
the following attack we retrieve this constraint, assuming that the associated
data length is not concatenated before the associated data themselves (it could
be encoded after the associated data even if for simplicity we just skip it). The
attacker will use this remark to forge a valid ciphertext from 2ℓ/2 encryption
queries.

We assume for the attack that associated data are always used, so that the
flag bit used in B0 is always set to 1. This attack exploits some relations he can
deduce from the collision on the nonce values: the attacker queries the encryption
oracle for messages of two blocks and three blocks. In both cases, only the last
block is encrypted. He thus collects ciphertext (Ni, C

i
0‖C

i
1) corresponding to the

authentication of M1‖M2 and the encryption of M2 under different nonces, and
ciphertexts (N ′

j , C
j
0‖C

j
1) corresponding to the authentication of M1‖M2‖M3 and

the encryption of M3 under different nonces. By the birthday paradox, after 2ℓ/2

queries, there is a collision between two nonces, one used for a query in the first
set and the other for a query in the second set. Thus, there exists i and j such
that Ni = Nj . Since plaintexts to authenticate and encrypt are of the same

length in both cases, we also have Bi
0 = Bj

0. For simplicity, the corresponding
ciphertexts are denoted (N, C0‖C1) and (N, C′

0‖C
′
1‖C

′
2).

14

The attacker can now compute the value

C0 ⊕ C′
0 = T ⊕ T ′

where T is the CBC-MAC value computed for the first message and T ′ is the
CBC-MAC value for the second. He thus can forge a valid ciphertext for the
message M1‖M2‖M3‖M3⊕C0⊕C′

0 where only the last block is encrypted. The
corresponding ciphertext is thus (N, C′

0‖C
′
1⊕C0⊕C′

0) with the associated data
M1‖M2‖M3. Figure 3 resumes this forgery.

The complexity of the attack is O(2ℓ/2) encryption queries. As ℓ ≤ n, it
means that relieve the constraint on the format of the authenticated data would
lead to better attacks than the birthday paradox bound proved by Jonsson.

5.3 Random nonces with inputs not formatting

Finally, in next attack we consider the case where the nonces are random and
the message length is not put in the pre-initial formatted input B0. This way
CCM computation can be done online, but however we show that in this case,
even without additional authenticated data, the security of CCM decreases.

The attacker will make 3 kinds of queries: the first ones are composed with a
plaintext of a single block denoted M1. This block is the same for all the queries.
The second kind of queries is composed with messages of two blocks, M1‖M2

where M1 is the same block as the one chosen for the first queries. Finally,
in the third set of queries, messages are composed with 3 blocks M1‖M2‖M3

where here again M1 and M2 are the same as before. The attackers queries the
encryption oracle for these messages until a collision occurs between the nonces
used for one message in each set. Thus, there exists integers i, j, k such that :
Ni = Nj = Nk and thus Bi

0 = Bj
0 = Bk

0 and Ai
0 = Aj

0 = Ak
0 (since B0 does

not depend on the message length anymore). The attacker is now able to forge a
valid ciphertext. We denote by (N, C1

0‖C
1
1) the corresponding ciphertext for the

one block message, (N, C2
0‖C

2
1‖C

2
2) the ciphertext for the two blocks message

and (N, C3
0‖C

3
1‖C

3
2‖C

3
3) the ciphertext for the three blocks message. Due to the

choice of the message blocks M1 and M2 and since the nonces collide for these
three encryptions, we remark that C1

1 = C2
1 = C3

1 and C2
2 = C3

2 . The first ones
are briefly denoted by C1 and the second by C2. We also denote by T1 the CBC-
MAC value for M1, T2 the one for M1‖M2, and T3 the one for M1‖M2‖M3.
These notations are given in figure 1.

Due to the collision between the nonces used for these three encryptions, the
value C1

0 ⊕ C2
0 is equal to T1 ⊕ T2. Although the attackers does not know the

values T1 and T2, he can exploit the knowledge of their bit-wise addition to forge
a valid ciphertext : indeed, the ciphertext C3

0‖C1‖C2 ⊕M2 ⊕ C1
0 ⊕ C2

0 ⊕M3 is
valid for the plaintext M1‖C

1
0 ⊕ C2

0 ⊕M3 and the nonce N . The input to the
third encryption box in the CBC chain is the bit-wise addition of the plaintext
block C1

0 ⊕ C2
0 ⊕M3 and the previous output T1. Since C1

0 ⊕C2
0 = T1 ⊕ T2, the

input is just T2 ⊕M3, that is to say the input to the fourth encryption box in
the CBC for the encryption of M1‖M2‖M3. Thus, the output is T3 (unknown to

15

the adversary) and the first ciphertext block is C3
0 . The second ciphertext block

is easily computable from C2 due to the malleability of the counter mode.
We now estimate the complexity of this attack and in particular the average

number of queries needed. The attackers queries the encryption oracle until a
collision appears between the nonces for three of them. By the birthday paradox,
a collision occurs for two encryption queries when 2ℓ/2 nonces have been chosen
at random. After 22ℓ/3 queries for M1 and M1‖M2, there are in average 24ℓ/3/2ℓ

collisions, i.e. 2ℓ/3 pairs of ciphertexts computed with the same nonce. If we con-
sider this set of ciphertext pairs and the set of 22ℓ/3 ciphertexts for M1‖M2‖M3,
there are in average triplet of ciphertexts computed with the same nonce. In a
general case, if Si is the number of ciphertext in each set, there is a 3-collision
on the nonces used if and only if S1 × S2 × S3 equals 2ℓ. Choosing Si = 22ℓ/3 is
the best compromise. Finally the attacker can forge a valid ciphertext with the
help of 3× 22ℓ/3 encryption queries. If ℓ ≤ 96 = 3n/4 then 2ℓ/3 ≤ n/2 and this
attack is better than the security bound given by Jonsson.

This attack illustrates the fact that if one wants to preserve the security, one
cannot increase CCM efficiency removing the particular format, with the message
length appended to the beginning of the message, and allowing repeating nonces.

6 Conclusion

In this paper we have studied the security of the CCM authenticated encryption
scheme and of a modified version. We have shown that slightly modifying CCM
one can prove the O(2n) security for authenticity, security which only conjectures
for CCM. Additionally, the modified version of CCM provably guarantees an
optimal security for privacy.

Besides, we have studied the CCM (and also modified CCM) properties that
restrict its efficiency. We exhibit that if we relieve some of them (if we let nonces
collide, if we break the prefix-freeness of authenticated messages removing the
message and/or authenticated data length) then one can mount attacks which
are better than the expected or proved security bound by Jonsson.

Acknowledgment

This work has been partially supported by the European Commission through
the IST Program under Contract IST-2002-507932 ECRYPT.

References

1. M. Bellare. New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In Crypto ’06, LNCS 4117. Springer-Verlag, Berlin, 2006.

2. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In 38th FOCS, pages 394–403. IEEE Computer Society
Press, Oct. 1997.

16

3. M. Bellare, O. Goldreich, and A. Mityagin. The Power of Verification Queries in
Message Authentication and Authenticated Encryption. Eprint cryptology archive
2004/309. Available at http://eprint.iacr.org, 2004.

4. M. Bellare and R. Impagliazzo. A Tool for Obtaining Tighter Security Analy-
ses of Pseudorandom Function Based Constructions, With Applications to PRF-
¿PRP conversion. Crytology ePrint archive, Report 1999/024, available at
http://eprint.iacr.org.

5. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In T. Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer, Dec. 2000.

6. M. Bellare, K. Pietrzak, and P. Rogaway. Improved security analyses for CBC
MACs. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 527–
545. Springer, Aug. 2005.

7. M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In B. K. Roy
and W. Meier, editors, FSE 2004, volume 3017 of LNCS, pages 389–407. Springer,
Feb. 2004.

8. Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 494–510. Springer, Aug. 2004.

9. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In Proc. of the

23rd STOC. ACM Press, New York, 1991.
10. N. M. Dworkin. Recommendation for Block Cipher Modes of Operation: The CCM

Mode for Authentication and Confidentiality, May 2002. NIST Special Publication
800-38C.

11. C. Hall, D. Wagner, J. Kelsey, and B. Schneier. Building PRFs from PRPs. In
H. Krawczyk, editor, Advances in Cryptology – Crypto’98, volume 1462 of LNCS,
pages 370 – 389. Springer-Verlag, 1998.

12. J. Jonsson. On the security of CTR + CBC-MAC. In K. Nyberg and H. M. Heys,
editors, SAC 2002, volume 2595 of LNCS, pages 76–93. Springer, Aug. 2003.

13. C. Jutla. Encryption Modes with Almost Free Message Integrity. In B. Pfitzmann,
editor, Advances in Cryptology – Eurocrypt’01, volume 2045 of LNCS, pages 529
– 544. Springer-Verlag, 2001.

14. J. Katz and M. Yung. Characterization of security notions for probabilistic private-
key encryption. Journal of Cryptology, 19(1):67–95, Jan. 2006.

15. H. Krawczyk. The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In J. Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 310–331. Springer, Aug. 2001.

16. S. Lucks. The Sum of PRP is a Secure PRF. In B. Preneel, editor, Advances in

Cryptology – Eurocrypt 2000, volume 1807 of LNCS, pages 470 – 484. Springer
Verlag, 2000.

17. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of
operation for efficient authenticated encryption. In ACM CCS 01, pages 196–205.
ACM Press, Nov. 2001.

18. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A Block-Cipher Mode
of Operation for Efficient Authenticated Encryption. In Proceedings of the 8th

Conference on Computer and Communications Security, pages 196 – 205. ACM
Press, 2001.

19. P. Rogaway and D. Wagner. A Critique of CCM, February 2003. Eprint cryptology
archive 2003/070. Available at http://eprint.iacr.org.

20. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004.

17

21. N. Special Publication 800-38C. Recommendation for Block Cipher Modes of Oper-
ation: The CCM Mode for Athentication and Confidentiality, May 2004. Available
at http://csrc.nist.gov/CryptoTollkit/modes/.

22. D. Whiting, R. Housley, and N. Ferguson. IEEE 802.11-02/001r2: AES Encryption
and Authentication Using CTR Mode and CBC-MAC, March 2002.

A CCM Encryption and Decryption Algorithms

In this section we give a description of CCM encryption and decryption algorithm
in pseudo-code. For the notations see subsection 3.1. We remind that the Ai,
the inputs for the counter mode, are derived from the nonce N , and the Bi

are derived from the size of the message, the size of the associated data, the
associated data itself, and the message itself.

Algorithm 1 CCM Encryption(M, D)

1: Choose N ,
2: function Authentication(N,D, M)
3: Generates B0, . . . , Br from N , M and D.
4: X0 ← E(B0)
5: for i← 1,r do

6: Xi ← E(Bi ⊕Xi−1)
7: end for

8: T ← lsbt (Xr)
9: return T

10: end function

11: function Encryption(N, D, T, M)
12: Generates A0, . . . , Am from N .
13: c0 ← lsbt (E(A0))⊕ T

14: for i← 1,m do

15: Ci ← E(Ai)⊕Mi

16: end for

17: C ← C0, . . . , Cm

18: return (N, C, D)
19: end function

18

Algorithm 2 CCM Decryption(N, C, D)

1: Generates A0, . . . , Am from N .
2: T ← lsbt (E(A0))⊕ C0

3: for i← 1,m do

4: Mi ← E(Ai)⊕ Ci

5: end for

6: M ←M0, . . . , Mm

7: Generates B0, . . . , Br from N , M and D.
8: X0 ← E(B0)
9: for i← 1,r do

10: Xi ← E(Bi ⊕Xi−1)
11: end for

12: if T == lsbt (Xr) then return (M, D)
13: else return ⊥
14: end if

19

