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Abstract. Authenticated encryption satisfies the basic need for authenticity and con-
fidentiality in our information infrastructure. In this paper, we provide the specification
of Ascon-128 and Ascon-128a. Both authenticated encryption algorithms provide effi-
cient authenticated encryption on resource-constrained devices and on high-end CPUs.
Furthermore, they have been selected as the “primary choice” for lightweight authen-
ticated encryption in the final portfolio of the CAESAR competition. In addition, we
specify the hash function Ascon-Hash, and the extendable output function Ascon-
Xof. Moreover, we complement the specification by providing a detailed overview of
existing cryptanalysis and implementation results.

Keywords. CAESAR competition, Authenticated encryption, Hash function, Extend-
able output function, Lightweight cryptography, Permutation-based cryptography,
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1. Introduction

Authenticated encryption schemes protect authenticity and confidentiality of data, two
security properties that are crucially needed in our information infrastructure. While the
traditional focus of authenticated encryption was in securing the connection between two
communicating devices, more and more devices now operate in environments where an
attacker may have physical access to the device. Hence, efficient protection against
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side-channel attacks is crucial and should preferably be implementable efficiently on
resource-constrained devices. At the same time, ciphers should also lend themselves to
fast software implementations on higher-end CPUs.

In this paper, we present the cipher suite Ascon, which provides authenticated en-
cryption with associated data (AEAD) and hashing functionality. The suite consists of
the authenticated ciphers Ascon-128 and Ascon-128a, which have been selected as
primary choice for lightweight authenticated encryption in the final portfolio of the
CAESAR competition [87], the hash function Ascon-Hash, and the extendable output
function Ascon-Xof. All schemes provide 128-bit security and internally use the same
320-bit permutation (with different round numbers) so that a single lightweight prim-
itive is sufficient to implement both AEAD based on the duplex construction [17] and
extendable-output hashing using the sponge construction [14].

The Ascon suite and especially the underlying 320-bit permutation have been de-
signed with these challenges of our modern information infrastructure in mind. Ascon
is considered highly secure and robust in practice with a very low area footprint in hard-
ware while providing good performance in software and hardware implementations. To
provide these properties, the main components of Ascon are inspired from standardized
and well-analyzed primitives. The substitution layer uses an affine equivalent of the
S-box used in the χ mapping of Keccak [19,27] designed to add diffusion. The per-
mutation layer uses linear functions similar to the � functions used in SHA-2 [71,72].
The resulting permutation is defined on 64-bit words using only bitwise Boolean func-
tions (and, not, xor) and rotations within words. Hence, the permutation lends itself
well to fast bitsliced implementations on 64-bit platforms, while bit interleaving [13]
allows for fast bitsliced implementations on 32-, 16-, and 8-bit platforms. Thus, Ascon
is an excellent choice in scenarios where lightweight devices carry out cryptographic
operations. Due to the good performance in software, Ascon is a perfect fit in scenarios
where lightweight devices communicate with high-end servers. Benchmarks show that
Ascon is particularly efficient for short messages [1,45].

Ciphers have to withstand real-world threats. Therefore, Ascon’s permutation and
authenticated encryption mode have been designed to provide robustness against certain
implementation mistakes and attacks and to facilitate efficient protected implementa-
tions. For example, even if an attacker somehow manages to recover an internal state
during data processing (e.g., due to side-channel attacks), this does not directly lead to
the recovery of the secret key or to constructing forgeries without significant additional
computations. Besides increasing the robustness of any implementation, this also allows
more efficient protection against side-channel attacks such as differential power anal-
ysis (DPA) attacks with leveled implementations [4,7]: In masked implementations, it
can be sufficient that the initialization and finalization provides high robustness against
side-channel analysis, whereas the bulk data can be processed at higher speed with a
lower protection level. Thanks to Ascon’s low-degree S-box, masked implementations
induce only a relatively small overhead in hardware and software [75], so it is feasible
to include protection on constrained devices.
Ascon-128 andAscon-128a have been selected as the “primary choice” for lightweight

authenticated encryption in the final portfolio of the CAESAR competition. Of the ini-
tial 57 submissions, six were selected for this portfolio in three use-cases. During this
competition, Ascon and its permutation have undergone a thorough public evaluation.
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This has resulted in numerous publications giving insight in the security of Ascon,
and many more that discuss Ascon more generally. All existing analysis shows a com-
fortable security margin, with no indication of weaknesses regarding Ascon-128 and
Ascon-128a.
History Ascon was first published as a candidate in Round 1 [32] of the CAESAR
competition [87]. This original design (version v1) specified the permutation as well
as the mode for authenticated encryption with two recommended family members: The
primary recommendation Ascon-128 as well as a variant Ascon-96 with 96-bit key.
For the subsequent versions v1.1 for Round 2 [33] and v1.2 for Round 3 [35], minor
functional tweaks were applied, including a reordering of the round constants and the
modification of the secondary recommendation to the current Ascon-128a.

At the time of writing, Ascon is competing in Round 2 [36] of the NIST Lightweight
Cryptography (LWC) project [74]. The submission to NIST includes not only the authen-
ticated cipher family, but also introduces modes of operation for hashing: Ascon-Hash
(with fixed output size) and Ascon-Xof (with variable output size), as well as a third
parameterization for authenticated encryption: Ascon-80pq.

The present paper describes Ascon v1.2 as selected in the CAESAR competition
including its additions for NIST LWC competition.
Outline We specify the Ascon cipher suite with its modes for authenticated encryption
and hashing as well as the core permutation in Sect. 2. We summarize the security claim
for theAscon family in Sect. 3 and give an overview of Ascon’s main features in Sect. 4.
In Sect. 5, we provide details on the design rationale for the modes and the permutation.
In Sect. 6, we analyze the security of the Ascon cipher suite and provide an overview
of third-party cryptanalysis results. We summarize and discuss implementation security
and efficient implementations in Sect. 7. Finally, we conclude in Sect. 8.

2. Specification of ASCON

This section provides a complete and self-contained specification of the Ascon cipher
suite, starting with an overview of the algorithms in Sect. 2.1, the individual recom-
mended parameter sets in Sect. 2.2, and the notation in Sect. 2.3. Afterward, the authen-
ticated encryption modes are specified in Sect. 2.4, the hashing mode in Sect. 2.5, and
the underlying permutation in Sect. 2.6.

2.1. Algorithms in the Ascon Cipher Suite

The Ascon cipher suite consists of a family of authenticated encryption designs Ascon
together with the hash function Ascon-Hash that builds upon the extendable output
function Ascon-Xof.
Authenticated encryption For the authenticated encryption designs Ascon, the family
members are parameterized by the key length k ≤ 160 bits, the rate (data block size) r
and internal round numbers a and b. Each design specifies an authenticated encryption
algorithm Ek,r,a,b and a decryption algorithm Dk,r,a,b. The authenticated encryption
procedure Ek,r,a,b takes as inputs a secret key K with k bits, a nonce (public message
number) N with 128 bits, associated data A of arbitrary length and a plaintext P of
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Table 1. Parameters for recommended authenticated encryption schemes.

Name Algorithms Bit size of Rounds

Key Nonce Tag Data block pa pb

Ascon-128 E,D128,64,12,6 128 128 128 64 12 6
Ascon-128a E,D128,128,12,8 128 128 128 128 12 8

arbitrary length. It produces an output consisting of the authenticated ciphertext C of
exactly the same length as the plaintext P plus an authentication tag T of size 128 bits,
which authenticates both the associated data and the encrypted message:

Ek,r,a,b(K , N , A, P) = (C, T ).

The decryption and verification procedure Dk,r,a,b takes as input the key K , nonce N ,
associated data A, ciphertext C and tag T , and outputs either the plaintext P if the
verification of the tag is correct or an error ⊥ if the verification of the tag fails:

Dk,r,a,b(K , N , A,C, T ) ∈ {P,⊥}.

Hashing The extendable output function is parameterized by the rate (data block size)
r , a round number a, and an output length limit h (h = 0 for unlimited output). The
extendable output function Xh,r,a maps the input message M of arbitrary length to a
hash output H of arbitrary specified length � ≤ h:

Xh,r,a(M, �) = H.

BothAscon-Hash and Ascon-Xof use this algorithm:Ascon-Hashwith h = � = 256,
Ascon-Xof with h = 0 for unlimited output. The parameter � solely influences the bit
length of H . So, calls to Xh,r,a(M, �′) = H ′ and Xh,r,a(M, �′′) = H ′′, having the same
parameters and inputs except �′ < �′′ result in H ′ and H ′′ having the same value for the
first �′ bits.

2.2. Recommended Parameter Sets

Authenticated Encryption Table 1 lists our recommended instances for authenticated
encryption and specifies their parameters, including the key size k, the fixed nonce and
tags sizes, the rate r , and the number of rounds a for the initialization and finalization
permutation pa and b for the intermediate permutation pb processing the associated data
and plaintext. The list is sorted by priority: the primary recommendation is Ascon-128
and the secondary recommendation is Ascon-128a. Both schemes are identical to the
CAESAR candidates [35] selected as primary choices for lightweight use-cases in the
final CAESAR portfolio [87].
HashingTable 2 lists our recommended instance for hashing and specifies its parameters,
including the size of the hash output h, the rate r , as well as the number of rounds a for
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Table 2. Parameters for recommended hashing algorithms.

Name Algorithm Bit size of Rounds

Hash Data block pa

Ascon-Hash X256,64,12 with � = 256 256 64 12

Table 3. Parameters for extendable output function.

Name Algorithm Bit size of Rounds

Hash Data block pa

Ascon-Xof X0,64,12 with arbitrary � � 64 12

Table 4. Parameters for authenticated encryption with increased key size.

Name Algorithms Bit size of Rounds

Key Nonce Tag Data block pa pb

Ascon-80pq E,D160,64,12,6 160 128 128 64 12 6

the permutation pa . The list is sorted by priority: the primary and only recommendation
is Ascon-Hash.
Further constructions based on Ascon’s permutation. Besides these main recommen-
dations listed above, it is also possible to use Ascon’s permutation for other purposes
and in different parameter configurations.

We define an extendable output functionAscon-Xofwhich uses the algorithmX0,64,12
with a rate of 64 bits and 12 rounds for pa to produce a hash output of arbitrary length
(see Table 3).

Furthermore, we define a new authenticated encryption scheme Ascon-80pq which
uses the algorithms E,D160,64,12,6 with an increased key size of 160 bits, a nonce and
tag size of 128 bits, a rate of 64 bits, 12 rounds for pa and 6 rounds for pb (see Table 4).

2.3. State and Notation

All members of the Ascon cipher suite operate on a state of 320 bits which they update
with permutations pa (a rounds) and pb (b rounds). The 320-bit state S is divided into
an outer part Sr of r bits and an inner part Sc of c bits, where the rate r and capacity
c = 320 − r depend on the Ascon variant.

For the description and application of the round transformations (Sect. 2.6), the 320-bit
state S is split into five 64-bit registers words xi , as illustrated in Fig. 3a:

S = Sr‖Sc = x0‖x1‖x2‖x3‖x4.
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Table 5. Notation used for Ascon’s interface, mode, and permutation.

K Secret key K of k ≤ 160 bits
N , T Nonce N , tag T , all of 128 bits
P,C, A Plaintext P , ciphertext C , associated data A (in r -bit blocks after padding Pi ,Ci , Ai )
M, H Message M , hash value H (in r -bit blocks Mi , Hi )
⊥ Error, verification of authenticated ciphertext failed
S The 320-bit state S of the sponge function
Sr , Sc The r -bit outer and c-bit inner part of the state S
p, pa , pb Permutations pa , pb consisting of a, b update rounds p, respectively
x ∈ {0, 1}k Bitstring x of length k (variable if k = ∗)
0k Bitstring of k bits (variable length if k = ∗), all 0
|x | Length of the bitstring x in bits
�x	k Bitstring x truncated to the first k bits

x�k Bitstring x truncated to the last k bits
x‖y Concatenation of bitstrings x and y
x ⊕ y Xor of bitstrings x and y
x mod y Remainder in integer division of x by y

x� Ceiling function, smallest integer larger than x
pC , pS , pL constant-addition, substitution and linear layer of p = pL ◦ pS ◦ pC
x0, . . . , x4 The five 64-bit words of the state S
x0,i , . . . , x4,i Bit i , 0 ≤ i < 64, of words x0, . . . , x4, with x·,0 the rightmost bit (LSB)
x ⊕ y Bitwise xor of 64-bit words or bits x and y
x � y Bitwise and of 64-bit words or bits x and y (denoted x y in the ANF)
x ≫ i Right-rotation (circular shift) by i bits of 64-bit word x

Whenever S needs to be interpreted as a byte-array (or bitstring), it starts with the most
significant byte (or bit) of x0 as byte 0 and ends with the least significant byte (or bit) of
x4 as byte 39.

Table 5 lists the notation and symbols used in this document.

2.4. Authenticated Encryption

The mode of operation of Ascon for authenticated encryption is based on duplex modes
like MonkeyDuplex [20], but uses a stronger keyed initialization and keyed finalization
function. The encryption and decryption operations are illustrated in Fig. 1a, b and
specified in Algorithm 1.
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Initialization The 320-bit initial state of Ascon is formed by the secret key K of k bits
and nonce N of 128 bits, as well as an IV specifying the algorithm (including the key
size k, the rate r , the initialization and finalization round number a, and the intermediate
round number b, each written as an 8-bit integer):

IVk,r,a,b ← k‖r‖a‖b‖0160−k =

⎧
⎪⎨

⎪⎩

80400c0600000000 forAscon-128

80800c0800000000 forAscon-128a

a0400c06 forAscon-80pq

S ← IVk,r,a,b‖K‖N

In the initialization, a rounds of the round transformation p are applied to the initial
state, followed by an xor of the secret key K :

S ← pa(S) ⊕ (0320−k‖K )

Processing Associated Data Ascon processes the associated data A in blocks of r bits.
It appends a single 1 and the smallest number of 0s to A to obtain a multiple of r bits
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Fig. 1. Ascon’s mode of operation.

and split it into s blocks of r bits, A1‖ . . . ‖As . In case A is empty, no padding is applied
and s = 0:

A1, . . . , As ←
{
r -bit blocks of A‖1‖0r−1−(|A| mod r) if |A| > 0

∅ if |A| = 0

Each block Ai with i = 1, . . . , s is xored to the first r bits Sr of the state S, followed
by an application of the b-round permutation pb to S:

S ← pb((Sr ⊕ Ai )‖Sc), 1 ≤ i ≤ s

After processing As (also if s = 0), a 1-bit domain separation constant is xored to S:

S ← S ⊕ (0319‖1)

Processing Plaintext/Ciphertext Ascon processes the plaintext P in blocks of r bits.
The padding process appends a single 1 and the smallest number of 0s to the plaintext P
such that the length of the padded plaintext is a multiple of r bits. The resulting padded
plaintext is split into t blocks of r bits, P1‖ . . . ‖Pt :

P1, . . . , Pt ← r -bit blocks of P‖1‖0r−1−(|P| mod r)
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Encryption In each iteration, one padded plaintext block Pi with i = 1, . . . , t is xored
to the first r bits Sr of the internal state S, followed by the extraction of one ciphertext
block Ci . For each block except the last one, the whole internal state S is transformed
by the permutation pb using b rounds:

Ci ← Sr ⊕ Pi

S ←
{
pb(Ci‖Sc) if 1 ≤ i < t

Ci‖Sc if 1 ≤ t

The last ciphertext block Ct is then truncated to the length of the unpadded last plaintext
block-fragment so that its length is between 0 and r − 1 bits, and the total length of the
ciphertext C is exactly the same as for the original plaintext P:

C̃t ← �Ct	|P| mod r

Decryption In each iteration except the last one, the plaintext block Pi is computed by
xoring the ciphertext block Ci with the first r bits Sr of the internal state. Then, the
first r bits of the internal state, Sr , are replaced by Ci . Finally, for each ciphertext block
except the last one, the internal state is transformed by the b-round permutation pb:

Pi ← Sr ⊕ Ci

S ← pb(Ci‖Sc), 1 ≤ i < t

For the last, truncated ciphertext block C̃t with 0 ≤ � < r bits, the procedure differs:

P̃t ← �Sr	� ⊕ C̃t

S ← (Sr ⊕ (P̃t‖1‖0r−1−�))‖Sc

Finalization In the finalization, the secret key K is xored to the internal state and the
state is transformed by the permutation pa using a rounds. The tag T consists of the last
128 bits of the state xored with the last 128 bits of the key K :

S ← pa(S ⊕ (0r‖K‖0c−k))

T ← 
S�128 ⊕ 
K �128

The encryption algorithm returns the tag T together with the ciphertext C1‖ . . . ‖C̃t . The
decryption algorithm returns the plaintext P1‖ . . . ‖P̃t only if the calculated tag value
matches the received tag value.

2.5. Hashing

The mode of operation for hashing is the sponge construction [14]. Both the hash function
Ascon-Hashwith fixed output size and the extendable output function Ascon-Xofwith
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Fig. 2. Hashing mode Xh,r,a in Ascon-Hash, Ascon-Xof .

variable output size internally use the same hashing algorithmXh,r,a (see Table 2), which
is illustrated in Fig. 2 and specified in Algorithm 2.
Initialization The 320-bit initial state of Ascon-Xof and Ascon-Hash is defined by
a constant IV that specifies the algorithm parameters in a similar format as for Ascon
(including k = 0, the rate r , and round numbers a and b = 0, each written as an 8-
bit integer), followed by the maximal output length of h bits as a 32-bit integer (with
h = � = 256 for Ascon-Hash and h = 0 for unlimited output in Ascon-Xof) and a
256-bit zero value. The a-round permutation pa is applied to initialize the state S:

IVh,r,a ← 08‖r‖a‖08‖h =
{
00400c0000000000 for Ascon-Xof

00400c0000000100 for Ascon-Hash

S ← pa(IVh,r,a‖0256)

The initial 320-bit state S can be precomputed for each instance and we get for Ascon-
Hash (left) and Ascon-Xof (right):

ee9398aadb67f03d ‖ b57e273b814cd416 ‖
8bb21831c60f1002 ‖ 2b51042562ae2420 ‖

S ← b48a92db98d5da62 ‖ S ← 66a3a7768ddf2218 ‖
43189921b8f8e3e8 ‖ 5aad0a7a8153650c ‖
348fa5c9d525e140 4f3e0e32539493b6

Absorbing Message Ascon-Xof and Ascon-Hash process the message M in blocks
of r bits. The padding process is the same as for the plaintext of Ascon: it appends a
single 1 and the smallest number of 0s to M such that the length of the padded message
is a multiple of r bits. The resulting padded message is split into s blocks of r bits,
M1‖...‖Ms :

M1, . . . , Ms ← r -bit blocks of M‖1‖0r−1−(|M| mod r)
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The message blocks Mi with i = 1, . . . , s are processed as follows. Each block Mi is
xored to the first r bits Sr of the state S, followed by an application of the a-round
permutation pa to S:

S ← pa((Sr ⊕ Mi )‖Sc), 1 ≤ i ≤ s

SqueezingThe hash output is extracted from the state in r -bit blocks Hi until the requested
output length � ≤ h is completed after t = 
�/r� blocks. After each extraction, the
internal state S is transformed by the a-round permutation pa :

Hi ← Sr
S ← pa(S), 1 ≤ i ≤ t = 
�/r�

The last output block Ht is truncated to � mod r bits (unless r divides �) and H =
H1‖ . . . ‖H̃t returned:

H̃t ← �Ht	� mod r

2.6. Permutation

The main components of the schemes Ascon, Ascon-Xof, and Ascon-Hash are the
two 320-bit permutations pa and pb. The permutations iteratively apply an SPN-based
round transformation p that in turn consists of three steps pC , pS , pL :

p = pL ◦ pS ◦ pC .

pa and pb differ only in the number of rounds. The number of rounds a and the number
of rounds b are tunable security parameters.

For the description and application of the round transformations, the 320-bit state S
is split into five 64-bit registers words xi , S = x0‖x1‖x2‖x3‖x4 (see Fig. 3).
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Fig. 3. Register words of the 320-bit state S and operations pL ◦ pS ◦ pC .

Table 6. Round constants cr used in each round i of pa and pb .

p12 p8 p6 Constant cr p12 p8 p6 Constant cr

0 00000000000000f0 6 2 0 0000000000000096
1 00000000000000e1 7 3 1 0000000000000087
2 00000000000000d2 8 4 2 0000000000000078
3 00000000000000c3 9 5 3 0000000000000069
4 0 00000000000000b4 10 6 4 000000000000005a
5 1 00000000000000a5 11 7 5 000000000000004b

Table 7. Ascon’s 5-bit S-box S as a lookup table.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

Addition of Constants The constant addition step pC adds a round constant cr to register
word x2 of the state S in round i (see Fig. 3a). Both indices r and i start from zero and
we use r = i for pa and r = i + a − b for pb (see Table 6):

x2 ← x2 ⊕ cr .

Substitution Layer The substitution layer pS updates the state S with 64 parallel appli-
cations of the 5-bit S-box S(x) defined in Fig. 4a to each bit-slice of the five registers
x0 . . . x4 (Fig. 3b). It is typically implemented in this bitsliced form with operations
performed on the entire 64-bit words, as in the example code in Fig. 5. The lookup table
of S is given in Table 7, where x0 is the MSB and x4 the LSB.
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Fig. 4. Ascon’s substitution layer and linear diffusion layer.

Linear Diffusion Layer The linear diffusion layer pL provides diffusion within each
64-bit register word xi (Fig. 3c). It applies a linear function �i (xi ) defined in Fig. 4b to
each word xi :

xi ← �i (xi ), 0 ≤ i ≤ 4.

3. Security Claims

3.1. Authenticated Encryption

AllAscon family members provide 128-bit security in the notion of nonce-based authen-
ticated encryption with associated data (AEAD), that is, they protect the confidentiality
of the plaintext (except its length) and the integrity of ciphertext including the asso-
ciated data (under adaptive forgery attempts). The number of processed plaintext and
associated data blocks protected by the encryption algorithm is limited to a total of
264 blocks per key, which corresponds to 267 bytes (for Ascon-128, Ascon-80pq) or
268 bytes (for Ascon-128a). We consider this as more than sufficient for lightweight
applications in practice. In order to fulfill the security claims stated in Table 8, imple-
mentations must take care that the nonce (public message number) is never repeated for
two encryptions under the same key, and that decrypted plaintexts are only released after
successful verification of the final tag. The difference between the family members is
in their robustness against other adversaries beyond the classical security claim and is
discussed in the following. In particular, Ascon-128a offers a higher throughput at the
cost of reduced robustness.
Ascon has been designed for robust security in case of certain implementation errors

that violate these requirements, such as repeated nonces. For instance, the security claims
of Table 8 can even be fulfilled if nonces are reused a few times by accident as long
as the combination of nonce and associated data stays unique. Furthermore, even a full
recovery of a single secret state during the processing of the associated data, plaintext,
or ciphertext (e.g., with implementation attacks) does not imply practical global attacks
such as key recovery or forgeries without significant additional computations. In this
case, forgeries can be obtained with complexity 2c/2 by constructing collisions on the
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Table 8. Security claims for authenticated encryption parameter sets.

Requirement Security in bits

Ascon-128 Ascon-128a Ascon-80pq

Confidentiality of plaintext 128 128 128
Integrity of plaintext 128 128 128
Integrity of associated data 128 128 128
Integrity of public message number 128 128 128

inner part, so the robustness of Ascon-128a (c = 192) is lower than that of Ascon-128
(c = 256). The same holds for key recovery attacks. We do not expect that key recovery
attacks for Ascon-128a and Ascon-128 can be found with complexity significantly
below min(2k, 2c/2) (296 and 2128, respectively) even if a few internal states can be
recovered.

Except for the single-use requirement, there are no constraints on the choice of the
nonce (public message number); in particular, it is possible to use a simple counter.
It is beneficial that a system or protocol implementing the algorithm monitors and,
if necessary, limits the number of tag verification failures per key. After reaching this
limit, the decryption algorithm rejects all tags. Such a limit is not required for the security
claims above, but may be reasonable in practice to increase the robustness against some
classes of implementation attacks.

As for most encryption algorithms, the ciphertext length leaks the plaintext length
since the two lengths are equal (excluding the tag length). If the plaintext length is
confidential, users must compensate this by padding their plaintexts.

We emphasize that we do not require ideal properties for the permutations pa, pb.
Non-random properties of the permutations pa, pb are known and do not afflict the
claimed security properties of the entire encryption algorithm. For a detailed security
analysis of Ascon, we refer to Sect. 6.

3.2. Hashing

Both Ascon-Hash and Ascon-Xof provide 128-bit security against collision attacks
and (second) pre-image attacks, as stated in Table 9. Note that the security of Ascon-
Xof is reduced if the output size � is less than 256 bits. Like other sponge-based hash
functions, both Ascon-Hash and Ascon-Xof also resist length extension attacks and
second-preimage attacks for long messages.

Table 9. Security claims for recommended parameter configurations of Ascon-Hashwith 256-bit hash output
and Ascon-Xof with an output size of � bits.

Requirement Security in bits

Ascon-Hash Ascon-Xof

Collision resistance 128 min(128, �/2)

(Second) Pre-image resistance 128 min(128, �)
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Like for authenticated encryption, we emphasize that we do not require ideal properties
for the permutations. Non-random properties of the permutations are known and do not
afflict the claimed security properties of Ascon-Hash and Ascon-Xof.

3.3. A Note on Post-Quantum Security

Since Ascon is targeting lightweight applications, we do not claim resistance against
all possible quantum attacks. However, Ascon provides enough robustness and agility
to provide basic resistance against certain classes of attacks once the availability of
appropriate quantum computer resources become evident.

Therefore, the Ascon suite provides an additional AEAD scheme Ascon-80pq. The
only difference between Ascon-80pq and Ascon-128 is the increased key length of 160
bits. This increased key length provides additional protection against Grover’s algorithm
for exhaustive key search [57]. The resulting security against Grover’s key search is
about 80 bits. Since all other tunable security parameters (the number of rounds of
the permutations) are not changed, the security claim for Ascon-80pq against classical
attacks stays the same as for Ascon-128, which is 128 bits (see Table 8).

Furthermore, Ascon-Hash and Ascon-Xof use the sponge construction with a ca-
pacity of c = 256 bits and an output size of � bits (with � = 256 for Ascon-Hash).
The post-quantum security of the sponge construction has been analyzed in [24]. The
resulting estimated bound is min(c/3, �/3). However, note that their proof applies to
sponge functions with non-invertible functions instead of a permutation as in Ascon. In
[22], the complexity of finding collisions using a quantum computer is assumed to be
2�/3. Although the complexity of the best quantum attack on the sponge construction
using a random permutation is unknown, no quantum attack with a complexity below
min(c/3, �/3) is known yet.

4. Features

TheAscon suite supports authenticated encryption and hashing with the same lightweight
permutation. Ascon-128 and Ascon-128a have been selected as the “primary choice”
for lightweight authenticated encryption in the final portfolio of the CAESAR compe-
tition. Ascon achieves high security and robustness in practice with a very low area
footprint in hardware while providing good performance in both software and hardware
implementations, particularly for short messages. We believe that ciphers which oper-
ate efficiently and securely on very resource-constrained devices, on modern high-end
systems, and also in the area between these two extremes will be of rising importance in
the future. A typical example for such dual environments is the Internet of Things (IoT),
where a large number of very constrained devices need to communicate efficiently with
high-performance back-end servers. In the following, we summarize the most important
properties of Ascon and justify that the cipher suite is a perfect fit for such applications.

4.1. Properties of Ascon

– Authenticated Encryption and Hashing Ascon offers authenticated encryption and
hashing with the same underlying permutation. Sharing a single primitive for all
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schemes not only reduces the area requirements for hardware implementations
that want to provide both, but also allows to restrict the code base that has to be
maintained. This reduces the workload necessary for efficient and secure imple-
mentations.

– High Cryptanalytic SecurityAscon-128 and Ascon-128a have been selected as the
“primary choice” for lightweight authenticated encryption in the final portfolio of
the CAESAR competition after five years of evaluation. During this competition,
Ascon and its permutation have undergone a thorough public analysis. So far,
this has resulted in more than 15 publications giving insight in the security of
Ascon(see Sect. 6.4). All existing analysis shows a comfortable security margin,
with no indication of weaknesses regardingAscon-128 andAscon-128a. A detailed
discussion about the security of Ascon can be found in Sect. 6.

– SimplicityAscon is natively defined on 64-bit words using only the bitwise Boolean
functions and, xor, not, and rot (bitwise rotation). This significantly reduces the
effort of implementing the algorithm on new target platforms.

– Lightweight and Flexible in Hardware Current implementation results show that
Ascon provides excellent implementation characteristics in terms of size and speed.
Balanced round-based CAESAR API implementations of Ascon-128 and Ascon-
128a achieve a throughput of 4.9–7.3 Gbps using less than 10 kGE. Due to the small
state size and the elegant structure of Ascon’s round function, it is additionally
possible to provide hardware implementations that are optimized toward either a
smaller area or higher speed. More details about hardware implementations are
provided in Sect. 7.

– Efficient in SoftwareAscon is designed to facilitate bitsliced software implementa-
tions. Its internal 64-bit operations are also well-suited for processors with smaller
word sizes, and can take advantage of pipelining and parallelization features of high-
end processors. In particular, the substitution and linear layers have been specifically
designed to support high instruction parallelism. In addition, the small state of As-
con allows to hold the whole state within the CPU’s registers for a wide range of
platforms, thus reducing reloads from the cache to a minimum. Further discussions
about the performance in software can be found in Sect. 7.

– Balanced Cross-Platform Design Ascon follows a balanced design approach, in-
stead of optimizing for only one particular platform or use-case at the cost of
efficiency on other platforms. In particular, Ascon has been designed to provide
lightweight implementation characteristics in both hardware and software while
still offering competitive performance on both. Hence, Ascon is highly suited for
scenarios where many lightweight devices communicate with a back-end server, a
typical use-case in the Internet of Things (IoT).

– Easy Integration of Side-Channel CountermeasuresAscon can be implemented ef-
ficiently for platforms and applications where side-channel resistance is important.
The very efficient bitsliced implementation of the S-boxes prevents cache-timing
attacks, since no lookup tables are required. Furthermore, the low algebraic degree
of the S-box facilitates both first- and higher-order protection using masking or
sharing-based side-channel countermeasures. More information about the integra-
tion of countermeasures against implementation attacks can be found in Sect. 7.
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– Robust Security in Practice Ascon’s sponge-based mode of operation for nonce-
based authenticated encryption features a strengthened keyed initialization and fi-
nalization. This improves the cipher’s robustness in case of misuse attacks, for ex-
ample against a nonce-reuse attacker. A potential recovery of the secret state during
data processing due to misuse attacks thus does not directly lead to a key-recovery
or universal forgery.

– Online and Single-Pass All Ascon algorithms are online and can process the data
blocks before the complete input or its length are known. For bothAscon encryption
and decryption, just one pass over the data is required.

– Inverse-Free Ascon does not need to implement any inverse operations since the
permutations pa and pb are only evaluated in one direction for both encryption and
decryption, which significantly reduces the area overhead.

– High Key AgilityAscon does not use a key schedule or expand the key by any other
means, so there are no hidden setup costs when the key is changed.

4.2. Features for Lightweight Applications

– Small hardware area Ascon’s small state and simple round function are well-
suited for small implementations, without compromising on the full security of 128
bits. Existing lightweight implementations of Ascon’s authenticated encryption
functionality are as small as 2.6 kGE [59]. The round-based implementations are
smaller than 10 kGE and still offer a throughput of 4.9–7.3 Gbps, which is already
sufficient to encrypt a Gigabit Ethernet connection. More details about (protected)
hardware implementations are provided in Sect. 7.

– Reuse of core component Implementing the Ascon permutation once is enough
to get authenticated encryption as well as decryption with a very small overhead,
since decryption does not require the inverse of the permutation (that is, Ascon is
inverse-free). Together withAscon-Hash and Ascon-Xof, it also provides hashing
functionality using the same permutation.

– Efficiency in hardware Ascon is not only small and fast, but can also be efficiently
implemented on a wide variety of platforms [49]. It allows many trade-offs between
throughput, latency, gate count, power consumption, etc. [59]. Comparison of im-
plementation results in [49] show that throughput per area of both Ascon variants is
very good compared to many other CAESAR candidates. Further discussion about
the performance in hardware can be found in Sect. 7.

– Bit-interleaved implementations Ascon’s permutation is naturally defined on 64-
bit words, with rotation operations performed on them and hence, lends itself to
natural bitsliced implementations on 64-bit processors. However, on architectures
with a smaller word-size, it is possible to implement Ascon using bit interleaving
as introduced for Keccak [13]. In short, bit interleaving involves sorting the single
bits in n registers of 64/n bits (with n = 2, 4, 8), such that a single rotation on
one 64-bit word can be implemented using n rotations on each of the n (64/n)-
bit words. Hence, when neglecting the effort to interleave the bits, the number of
operations per round on smaller architectures only increases roughly to n · �, where
� are the number of operations needed with 64-bit registers. Thus, Ascon allows
not only for fast bitsliced implementations on 64-bit processors, but also allows
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for fast bitsliced implementations on smaller architectures that do not require any
data-dependent lookup tables. Further insights about the performance in software
on various platforms are given in Sect. 7.

– Natural side-channel protection This is one of the primary design goals of Ascon.
For protection against side-channel attacks, it is important that the S-box is easy to
protect.Ascon’s S-box has a low algebraic degree of 2 and a low number of Boolean
multiplications, which is well-suited for threshold implementations [75] and similar
protection approaches. More information about the integration of countermeasures
against implementation attacks can be found in Sect. 7.4.

– Limited damage in misuse settings Ascon uses nonce-based authenticated encryp-
tion. As with any nonce-based authenticated encryption scheme, repeating nonces
is a misuse setting, and implies a loss of semantic security. But compared to other
sponge-based constructions, Ascon provides better robustness in case of a poten-
tial state recovery, since both initialization and finalization are keyed additionally.
A recovery of the secret state during data processing does not directly lead to a
key-recovery or universal forgery. Furthermore, Ascon’s mode is compatible with
alternative decryption interfaces for secure implementations in memory-constrained
settings [2].

– Low overhead for short messages Ascon is among the fastest CAESAR candi-
dates for short messages according to current software benchmarking results[1,45],
since its initialization and finalization overhead is much smaller compared to most
blockcipher-based constructions, stream ciphers, or large-state sponge functions.
For instance, if the associated data is empty, no additional permutation calls are
necessary. Ascon’s small rate of 8 or 16 bytes is ideally suited for short messages
that are typical for lightweight applications.

4.3. Features for High-Performance Applications

– Efficiency onmodernCPUsThe bitsliced design of Asconusing simple instructions
makes it easy to implement efficiently on a wide range of platforms. The native
word-size of Ascon is 64 bits, which makes it especially efficient on high-end
CPUs. Up to five instructions can be carried out in parallel in nearly every step of
the permutation which makes Ascon fast in software on 64-bit as well as 32-bit
CPUs. Further insights about the performance in software on various platforms are
given in Sect. 7.

– Efficiency on dedicated hardware The linear and nonlinear layer in Ascon are
designed to use a small number of simple bitwise Boolean functions. Hence, it is
easy to build dedicated hardware or reuse SIMD instructions for Ascon.

– Natural side-channel protection Ascon is a bitsliced design with a small state
size, which means that straightforward software implementations require no data-
dependent table lookups or other cache accesses. On many platforms, all data can
be kept in registers during computations. This is for instance important in cloud
applications to prevent cross-VM attacks and other cache-based attacks.
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5. Design Rationale

The main goal of the Ascon suite is a very low memory footprint in hardware and
software, while still being fast, robust, and secure with a well-analyzed and generous
security margin. The design rationale behind Ascon is to provide the best trade-off
between security, size and speed in both software and hardware, with a focus on size.

The Ascon suite is based on the sponge design methodology [14]. The permutation of
Ascon uses an iterated substitution-permutation-network (SPN), which provides good
cryptographic properties and fast diffusion at a low cost. To provide these properties, the
main components of Ascon are inspired from standardized and well-analyzed primitives.
The substitution layer uses an affine equivalent of the S-box used in the χ mapping of
Keccak [19,27] designed to add diffusion. The permutation layer uses linear functions
similar to the � functions used in SHA-2. The resulting design has itself been thoroughly
analyzed during the CAESAR competition, and the published results show a comfortable
security margin. Details on the design principles for each component are given in the
following sections.

5.1. Design of the Modes

Choice of the Mode for Authenticated Encryption The design principles of Ascon’s
authenticated encryption mode follow the sponge methodology [14]. More precisely,
they are similar to SpongeWrap [17] and MonkeyDuplex [20]. The sponge-based design
has several advantages compared to other available construction methods like some
blockcipher- or hash-based modes and other dedicated designs:

– The sponge construction is well-studied and has been analyzed and proven secure
for different applications in a large number of publications. Moreover, the sponge
construction is used in the SHA-3 winner Keccak.

– Flexible to adapt for other functionality (hash, MAC, cipher).
– Elegant and simple design, clear state size, no key schedule.
– Plaintext and ciphertext blocks can both be computed online, without waiting for

the complete message or even the message length.
– Little implementation overhead for decryption, which uses the same permutations

as encryption.
– Weak round transformations can be used to process additional plaintext blocks,

improving the performance for long messages.

Compared to other sponge-based authenticated encryption designs, Ascon uses a
stronger keyed initialization and keyed finalization phase. As a result, even in case an
attacker somehow manages to recover the internal state during data processing (e.g.,
due to side-channel attacks), this does not directly lead to the recovery of the secret
key or forgeries without significant additional computations. To allow this additional
robustness, Ascon has to set the possibility of full state absorption aside. However, we
value robustness for lightweight use-cases more than a potential increase in performance.

The addition of 0319‖1 after the last processed associated data block and the first
plaintext block acts as a domain separation to prevent attacks that change the role of
plaintext and associated data blocks.
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If no associated data and only an incomplete plaintext block is present, the two ini-
tialization and finalization calls to pa are sufficient and no additional intermediate round
transformation pb is needed. To prevent that key additions between the two applications
of pa cancel each other out in this case, they are added to different parts of the inner
part Sc of the state.
Choice of theMode forHashing andExtendableOutput FunctionAsAscon-128 and As-
con-128a are already well-established as the primary recommendations for lightweight
use-cases in the final portfolio of the CAESAR competition, we extend the functionality
that can be provided by using the same well-analyzed permutation. It is a natural decision
to also base the hashing and extendable output functionality on sponge functions [14].
For hashing, sponge functions provide similar benefits as for authenticated encryption:

– The sponge construction is well-studied and has been analyzed and proven secure
for different applications in a large number of publications. Moreover, the sponge
construction is used in the SHA-3 winner Keccak.

– The core component (permutation) can be reused if Ascon for authenticated en-
cryption is already implemented, reducing the implementation overhead.

– The elegant and simple design has an obvious state size.
– The construction is flexible to adapt for other functionalities (authenticated encryp-

tion, MAC, cipher).
– Message blocks can be processed online, without waiting for the complete message

or even the message length initially be present.

Choice of the Family Members The Ascon suite is built around the well-analyzed au-
thenticated encryption schemesAscon-128 and Ascon-128a. The newly added schemes
Ascon-80pq, Ascon-Hash, and Ascon-Xof are designed to provide the same security
level as Ascon-128 and Ascon-128a, which is 128 bits of security against attacks in the
classical setting (e.g., no quantum computers are available), as detailed in Sect. 3.

The rationale behind this is that 128 bits of security against classical attacks is generally
considered to provide enough security for lightweight applications for the next decades.
Furthermore, choosing and providing instances that give more security against classical
attacks would require more resources without providing any benefit in the foreseeable
future, which contradicts the use of lightweight ciphers in the first place. In the following,
we still justify our decision in providing three different instances Ascon-128, Ascon-
128a, and Ascon-80pq for authenticated encryption with the same security level.
Ascon-128 and Ascon-128a provide the same level of security in a black-box sce-

nario if the nonce is used correctly, but there is a trade-off regarding performance and
robustness. Ascon-128a doubles the rate compared to Ascon-128, at the cost of slightly
more rounds in pb. This decreases the capacity, which also reduces the robustness of the
scheme. For example, if an attacker manages to recover a single internal state during the
processing of associated data or plaintext/ciphertext, the decreased capacity of Ascon-
128a leads to a slight benefit in finding collisions to compute forgeries (complexity 296

vs. 2128). Note that a single state recovery still does not directly lead to an efficient key
recovery attack on the scheme.
Ascon-Hash and Ascon-Xof reuse the 12-round variant of the Ascon permutation

from the initialization and finalisation of Ascon-128 and Ascon-128a. Pairing this
well-scrutinized building block with the extensively analyzed and researched sponge
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construction [14,15] provides a well-secured and efficient hash function. We have also
defined an extendable output function Ascon-Xof in addition to the fixed-size hash
function Ascon-Hash, since the sponge construction naturally allows this functionality
and it may be more useful in practice.

A message authentication code (MAC) can be constructed from Ascon-Hash in
a straightforward way using the KMAC construction [73]. However, using the sponge
construction, a full state absorption is also possible [43], which can improve the efficiency
of an Ascon-based MAC significantly.
Choice of the Initial Values The main purpose of the initial values is to provide a sep-
aration of the different instances. For all schemes of the Ascon suite, the IV is added
to the first word and encodes parameters of the scheme such as the key length, rate,
number of rounds, or hash output length. The IV provides a separation between the
different primitives. In the case of Ascon-Hash and Ascon-Xof, the first call on the
permutation including the IV is done without any data and hence, an equivalent initial
state can be precomputed, stored and used instead.

5.2. Design of the Permutation

Ascon’s permutation consists of three layers: the round constant addition pC , the sub-
stitution layer pS , and the linear layer pL . The substitution layer provides nonlinearity
and additionally doubles as a diffusion layer along the vertical axis, between words.
The linear layer then provides diffusion along the horizontal axis, within words. In the
following, we detail the rationale for these individual layers.
Choice of the Round Constants The round constants have been chosen large enough
to avoid slide, rotational, self-similarity or similar attacks. Their values were chosen
in a simple, obvious way (increasing and decreasing counter for the two halves of the
affected byte), which makes them easy to compute using a simple counter and inversion
operation. Their low entropy is an indicator that the constants are not used to implement
backdoors. The pattern can also easily be extended for up to 16 rounds if a higher security
margin is desired.

The position for inserting the round constants (in word x2) was chosen so as to allow
pipelining with the next or previous few operations (message injection in the first round
or the following instructions of the bit-sliced S-box implementation).
Choice of the Substitution and Vertical Diffusion Layer The substitution layer contains
the only nonlinear part of the round transformation. It mixes a sequence of 5 bits, each
at the same bit position of the five state words, using 5-bit S-boxes. The S-box was
designed according to the following criteria:

– Invertible and no fix-points,
– Efficient bit-sliced implementation with few, well pipelinable instructions,
– Each output bit depends on at least 4 input bits,
– Algebraic degree 2 to facilitate threshold implementations and masking,
– Maximum differential probability and linear bias 1/4,
– Differential and linear branch number 3,
– Avoid trivially iterable differential properties in the data injection positions.
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The χ mapping of Keccak fulfills several of these properties and is already well-
analyzed. In addition, the χ mapping is highly parallelizable and has a compact descrip-
tion with relatively few instructions. This makes χ fast in both software and hardware.
The drawback of χ in this context are its differential and linear branch numbers (both
2), a fix-point at value zero, and that each output bit only depends on 3 input bits (only
two of them nonlinearly).

For a better interaction with the linear layer of Ascon and a better trade-off between
performance and security, we require a branch number of 3. This and the other additional
requirements can be achieved without destroying other properties by adding lightweight
affine transformations to the input and output of χ . Adding this affine transformation to
the substitution layer (mixes columns) instead of the linear layer (mixes rows) results in
a simpler design which also facilitates the analysis of Ascon.

The costs of these affine transformations are quickly amortized since a branch number
of 3 (together with an according linear layer) essentially doubles the number of active
S-boxes from round to round (in sparse trails). There are only a handful of options for
a lightweight transformation (few xor operations) that achieve both required branch
numbers. We experimentally selected the candidate that provided the best diffusion in
combination with the selected linear layer.

The bit-sliced design of the S-box has several benefits: it is highly efficient to imple-
ment parallel invocations on 64-bit processors (and other architectures), and no lookup
tables are necessary. This effectively precludes typical cache-timing attacks for software
implementations.

The algebraic degree of 2 theoretically makes the S-box more prone to analysis with
algebraic attacks. However, we did not find any practical attacks. We consider it more
important to allow efficient implementation of side-channel countermeasures, such as
threshold implementation [75] and masking [25,54], which are facilitated by the low
degree.

The differential and linear probabilities of the S-box are not ideal, but using one
of the available 5-bit AB/APN functions like in Fides [8] was not an option due to
their much more costly bit-sliced implementation. Considering the relatively lightweight
linear layer, repeating more rounds of the cheaper, reasonably good S-box is more
effective than fewer rounds of a perfect, but very expensive S-box.
Choice of the Horizontal Linear Diffusion Layer The linear diffusion layer mixes the bits
within each 64-bit state word. For resistance against linear and differential cryptanalysis,
we required a branch number of at least 3. Additionally, the interaction between the
linear layers for separate words should provide very good diffusion, so different linear
functions are necessary for the 5 different words. These requirements should be achieved
at a minimal cost. Although simple rotations are almost for free in hardware and relatively
cheap in software, the slow diffusion requires a very large number of rounds. Moreover,
the best performance can be achieved by balancing the costs of the substitution and
linear layer.

On the other hand, mixing layers as used in AES-based designs provide a high branch
number, but are too expensive to provide an acceptable speed at a small size. The mix-
ing layer of Keccak is best used with a large number of large words. Other possible
candidates are the linear layers of Luffa [44], Hamsi [65], or other SPN-based designs.
However, these candidates were either too slow or provide a less optimal diffusion.
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The linear diffusion layer and rotation values in Ascon have been chosen similar to the
� functions in SHA-2 [71,72]. These functions offer a branch number of 4. Additionally,
if we choose one rotation constant of each � function to be zero, the performance can be
improved while the branch number stays the same. On the other hand, the cryptographic
strength can be improved by using different rotation constants for each 64-bit word
without sacrifice on the performance. In this case, the branch number of the substitution
and linear layer amplify each other which increases the minimum number of active S-
boxes. We have chosen the rotation constants to achieve a good diffusion after 3 rounds
of Ascon.

6. Security Analysis

The Ascon authenticated cipher with its permutations pa, pb was first published as a
submission to the CAESAR competition in 2014. Since then, the cryptographic research
community has published numerous analyses of Ascon’s design. The results have con-
firmed Ascon’s security with a generous security margin. We provide a summary of the
best results in Sect. 6.1. For a list of publications and comments, we refer to Sect. 6.4. In
Sect. 6.2, we discuss the security of the modes of operation for authenticated encryption
and hashing. In Sect. 6.3, we provide details on the cryptanalytic properties of the Ascon
permutation and their relevance for attacks.

6.1. Overview of Best Known Attacks

Table 10 summarizes the best published attacks on the Ascon permutation as well as
on the Ascon authenticated encryption, Ascon-Hash, and Ascon-Xof. As stated in
the original design document, Ascon’s permutations are not considered to be ideal 320-
bit permutations. However, when used in the recommended modes of operation, Ascon
retains a generous security margin. The currently best cryptanalytic attacks on theAscon
authenticated encryption (excluding misuse scenarios) can recover the secret key with
a time complexity of about 2104 only if the initialization is reduced to 7 of 12 rounds,
which corresponds to a security margin of 5 rounds or 42%.

6.2. Analysis of the Modes

Hashing and Extendable Output Function The mode of operation in Ascon-Hash and
Ascon-Xofuses the sponge construction proposed by Bertoni et al. [14] and profits from
the extensive literature on sponge functions, particularly the results on its indifferentia-
bility up to about 2c/2 calls to the permutation or its inverse, where c is the capacity in
bits [15].
Authenticated Encryption The mode of operation in Ascon is based on the duplex con-
struction [17], or more specifically, a variant of the AEAD mode MonkeyDuplex with
its reduced number of rounds in the data processing phases [20]. In contrast to Mon-
keyDuplex, however, Ascon’s mode uses a double-keyed initialization and double-
keyed finalization in order to improve the robustness of the scheme.
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Table 10. Best known analysis of the Ascon modes and permutation.

Type Target Rounds Time Method Reference

(a) Best known analysis of the Ascon permutation
Distinguisher Permutation 12/12 2130 Zero-sum [34]

Permutation 11/12 2315 Integral [91]
Permutation 5/12 2193 Differential Section 6.3
Permutation 5/12 2189 Linear [31]

Distinguisher Permutation 11/12 285 Zero-sum Section 6.3
Permutation 7/12 265 Integral [91]
Permutation 5/12 2109 Truncated Differential [89]
Permutation 4/12 2107 Differential Section 6.3
Permutation 4/12 2101 Linear [31]

Distinguisher Permutation 5/12 – Zero-Correlation Section 6.3
Permutation 5/12 – Impossible Differential Section 6.3
Permutation 3/12 – Subspace Trails [69]

(b) Best known analysis of Ascon authenticated encryption modes ( )
Key recovery Ascon initialization 7/12 2104 Cube-like [67]

Ascon initialization 5/12 236 Diff.-linear [34]

Ascon initialization 7/12 Cube-like [70]
Forgery Ascon finalization 4/12 2101 Differential [34]

Ascon finalization 6/12 Cube tester [70]
State recovery Ascon-128a iteration 2/8 − Sat-Solver [42]

Ascon-128 iteration 5/6 Cube-like [70]

(c) Best known analysis of Ascon-Hash and Ascon-Xof ( ).
Preimage Ascon-Xof 64 2/12 239 Cube-like [37]

Ascon-Xof 64 6/12 263.3 Algebraic [37]
Collision Ascon-Hash 256 2/12 2125 Differential [95]

Ascon-Xof 64 2/12 – Differential [95]
Ascon-Xof all 4/12 Differential [37]

AEAD modes using the duplex construction have also enjoyed considerable attention
from the research community, and several security proofs with different bounds have
been provided. The first proofs indicate that the duplex modes can provide security
beyond the birthday bound on the capacity c, as long as the online data complexity
remains well-below this birthday bound 2c/2 [18,62]. Andreeva et al. [3] show that the
time complexity is at least min{2k, 2c/μ}, where μ is the multiplicity [16], which is
small for nonce-based schemes.

Daemen et al. [43] provide stronger bounds based on distinguishing Ascon’s mode
from an Ideal Extendable Input Function (IXIF) and consider a multi-user setting as well
as both respecting and misuse adversaries. Their results show that (without considering
robustness and the specifics of the permutation) the data limit or key size could be further
increased.

The main difference from other duplex-based modes of operation is the double-keyed
initialization and finalization. As a result, even if an attacker manages to recover the
internal state in some way (e.g., with implementation attacks such as side-channels or
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with misuse attacks such as massive nonce reuse or release of unverified plaintext),
this attack cannot easily be extended to key recovery or forgeries without significant
additional computations. Possible attacks after such a state recovery include forgeries
by finding internal collisions (2c/2 time).

6.3. Analysis of the Permutation

Differential and Linear Properties Ascon’s permutation design is based on two
lightweight operations with non-ideal individual differential and linear properties, but
with good combined properties. The best known characteristics with probability > 2−128

cover 4 rounds of the permutation.
DDT and LAT Table 11a lists the differential distribution table (DDT) of the Ascon
S-box. The maximum differential probability of the S-box is 2−2 and its differential
branch number is 3. Table 11b lists the linear approximation table (LAT). The maximum
linear bias of the S-box is 2−2 and its linear branch number is 3.

The differential and linear branch number of the linear �i functions is 4.
Characteristics and Active S-Boxes The minimum number of active S-boxes of 3 rounds
is 15 (for differential characteristics) and 13 (for linear characteristics).

For results on more than 3 rounds, we used heuristic search tools to find good dif-
ferential and linear characteristics for more rounds to get close to the real bound. The
results are listed in Table 12. The best differential and linear characteristics for 4 rounds
are given in Table 13a, b, respectively. We could not find any differential and linear
characteristics for 5 or more rounds with less than 64 active S-boxes. The best differen-
tial and linear characteristics, we could find for 5 rounds already have 78 and 67 active
S-boxes, respectively. However, note that due to the larger search space for 5 rounds, we
restricted our search to differential and linear trails that are sparse in the middle (rounds
1–3).
Characteristics with Constraints Besides the differential propagation in Ascon, an at-
tacker is in particular interested in collision-producing differentials, i.e., differentials
with only differences in the outer part Sr of the state at the input and output of pb, since
such differentials might be used for a forgery attack on the authenticated encryption
scheme. However, considering the good differential properties of pb and the results of
the previous sections, it is very unlikely that such differentials with a good probability
exist. The best collision-producing differential trails we could find for pb in Ascon-128
(Table 14a) and Ascon-128a (Table 14b) using a heuristic search algorithm have 117
and 192 active S-boxes, respectively.

For forgery attacks on Ascon’s finalization, the input difference must be in the outer
part, but there are no restrictions on the output difference. A corresponding characteristic
for 4 out of 12 rounds is provided in Table 14c [34].
Impossible Differentials and Zero-Correlation Approximations Using an automated
search tool, we were able to find impossible differentials [64] for up to 5 rounds (Table
15a) and zero-correlation linear hulls [23] for up to 5 rounds (Table 15b) of the permuta-
tion. It is possible that impossible differentials for more rounds exist. However, we have
not found any practical attacks on Ascon using this property of the permutation.
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Table 11. Differential and linear profile of the Ascon S-box.

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

(a) Differential distribution table: DDT[α, β] = |{x : S(x ⊕ α) ⊕ S(x) = β}|
0 32 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · · · · · · · 4 · 4 · 4 · 4 · · · · · · · · 4 · 4 · 4 · 4 ·
2 · · · · · · · · · · · · · · · · · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4
3 · 4 · · · 4 · · · 4 · · · 4 · · 4 · · · 4 · · · 4 · · · 4 · · ·
4 · · · · · · 8 · · · · · · · 8 · · · · · · · 8 · · · · · · · 8 ·
5 · · · · · · · · · · · · · · · · · 4 · 4 4 · 4 · 4 · 4 · · 4 · 4
6 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2
7 · · 4 4 · · 4 4 · · 4 4 · · 4 4 · · · · · · · · · · · · · · · ·
8 · · · · · · 4 4 · · · · · · 4 4 · · · · · · 4 4 · · · · · · 4 4
9 · 2 · 2 2 · 2 · 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 · 2 · 2 2 · 2 ·
a · 2 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 2 · 2 · · 2
b · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2
c · 8 · · · · · · 8 · · · · · · · 8 · · · · · · · · 8 · · · · · ·
d · 2 · 2 · 2 · 2 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · · 2 · 2 · 2 · 2
e · 4 4 · 4 · · 4 · · · · · · · · · 4 4 · 4 · · 4 · · · · · · · ·
f · · · · · · · · 4 4 · · 4 4 · · · · · · · · · · 4 4 · · 4 4 · ·
10 · · · · · · · · · 8 · 8 · · · · · · · · · · · · 8 · 8 · · · · ·
11 · · · · · · · · · · · · · · · · · 8 · 8 · 8 · 8 · · · · · · · ·
12 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·
13 · · 8 · 8 · · · · · 8 · 8 · · · · · · · · · · · · · · · · · · ·
14 · · · · 4 4 4 4 · · · · 4 4 4 4 · · · · · · · · · · · · · · · ·
15 · · · · · 4 · 4 · 4 · 4 · · · · · 4 · 4 · · · · · · · · · 4 · 4
16 · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17 · · 4 · 4 · · · · · 4 · 4 · · · · · 4 · 4 · · · · · 4 · 4 · · ·
18 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2
19 · · · 4 · · 4 · 4 · · · · 4 · · 4 · · · · 4 · · · · · 4 · · 4 ·
1a · 2 2 · · 2 2 · 2 · · 2 2 · · 2 · 2 2 · · 2 2 · 2 · · 2 2 · · 2
1b · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · ·
1c · 4 · 4 · · · · 4 · 4 · · · · · 4 · 4 · · · · · · 4 · 4 · · · ·
1d · · · 4 · 4 · · 4 · · · · · 4 · 4 · · · · · 4 · · · · 4 · 4 · ·
1e · · · · · · · · 2 2 2 2 2 2 2 2 · · · · · · · · 2 2 2 2 2 2 2 2
1f · · 4 4 4 4 · · · · · · · · · · · · 4 4 4 4 · · · · · · · · · ·

Other published properties include a differential-linear attack on up to 5 rounds of
Ascon’s initialization with practical complexity [11,34] and truncated differential dis-
tinguishers based on undisturbed bits for up to 5 rounds with 2109 data [89].
Algebraic Properties Ascon’s algebraic degree of 2 for each round is useful for ef-
ficient secure implementations, but requires a sufficient number of rounds to prevent
algebraic attacks. The best known algebraic attacks cover 7 out of 12 rounds of Ascon’s
initialization.
Algebraic Normal Form (ANF)Let x0,i , . . . , x4,i denote the bits in column i , 0 ≤ i < 64,
where x0,0 is the least significant (rightmost) bit of the first register word (outer part) of
the state. Let y0,i , . . . , y4,i denote the same bit position after application of either the
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Table 11. continued.

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

(b) Linear approximation table: LAT[α, β] = |{x : α� · x = β� · S(x)}| − 16
0 16 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · · · · 8 · · 4 4 · · -4 4 · · · 4 4 · · 4 -4 4 · -4 · -4 · -4 ·
2 · · · · · · -8 8 · · 4 4 · · 4 4 · · 4 4 · · -4 -4 · · · · · · · ·
3 · 8 · · · · · · · 4 · 4 · 4 · -4 -8 · · · · · · · 4 · 4 · 4 · -4 ·
4 · · · 4 · -4 · · · · 4 · · 4 -4 -4 · · 4 · -4 · · · · -8 · -4 -4 · 4 -4
5 · · · 4 · 4 · · · -4 · · · · · -4 · · · -4 4 · -4 -4 4 · -4 4 · -8 · -4
6 · · · 4 · -4 · · · · · -4 · 4 · · · · · -4 -4 · -4 -4 · 8 · -4 -4 · -4 4
7 · · · -4 · -4 · · · 4 4 4 · · -4 · · · -4 · -4 · · · -4 · -4 4 · -8 · 4
8 · · · · · · · · · · 4 4 · · -4 -4 · · · · · · · · · 8 -4 4 · 8 4 -4
9 · · · · · · · -8 · -4 · 4 · 4 · 4 · · 4 4 · · -4 4 4 · · 4 -4 · · 4
a · · · · · · · · · · · · · · · · · · 4 4 · · 4 4 · 8 4 -4 · -8 4 -4
b · 8 · · · · · · · -4 4 · · -4 -4 · 8 · · · · · · · 4 · · -4 4 · · 4
c · · -8 4 -8 -4 · · · · · 4 · -4 · · · · -4 · 4 · · · · · 4 · -4 · · ·
d · · · -4 -8 4 · · · 4 -4 -4 · · -4 · · · · 4 -4 · -4 -4 4 · · · · · 4 ·
e · · · -4 8 -4 · · · · -4 · · -4 -4 -4 · · · 4 4 · -4 -4 · · 4 · -4 · · ·
f · · 8 -4 -8 -4 · · · -4 · · · · · -4 · · 4 · 4 · · · -4 · · · · · -4 ·
10 · · · · · · -8 · · 4 · -4 -4 · -4 · · · · · 4 -4 4 4 4 · -4 · -4 · -4 ·
11 · · · · · · · · -8 · -4 4 -4 -4 · · · 8 4 -4 -4 -4 · · · · · · · · · ·
12 · -8 · · · · · · · -4 4 · -4 · · -4 · · -4 4 -4 -4 · · 4 · 4 · 4 · -4 ·
13 · · · · · · -8 -8 · · · · 4 -4 4 -4 · · · · -4 4 4 -4 · · · · · · · ·
14 · · · 4 · 4 · · · 4 4 -4 -4 -4 · -4 · · 4 · · 4 -4 4 -4 · 4 4 · · · 4
15 · · · 4 · -4 · · · · · -4 4 · -4 4 · 8 · 4 · 4 · · · · · 4 4 · -4 -4
16 · · · -4 · -4 · · · 4 · · -4 4 4 · 8 · · -4 · 4 · · 4 · 4 4 · · · -4
17 · · · 4 · -4 · · 8 · -4 · -4 · · · · · 4 · · -4 4 -4 · · · 4 4 · 4 4
18 · · · · · · · -8 · 4 4 · -4 · · 4 · · · · 4 -4 -4 -4 -4 · · -4 4 · · -4
19 · · · · · · · · · · · · 4 -4 -4 4 · -8 4 -4 -4 -4 · · · · 4 4 · · -4 -4
1a · 8 · · · · · · · -4 · -4 -4 · 4 · · · -4 4 -4 -4 · · -4 · · 4 -4 · · -4
1b · · · · · · · · 8 · -4 4 -4 -4 · · · · · · -4 4 -4 4 · · -4 -4 · · -4 -4
1c · · 8 4 · -4 · · · 4 · · 4 -4 4 · · · -4 · · -4 -4 4 4 · · · · · 4 ·
1d · · · -4 · 4 · · 8 · 4 · 4 · · · · 8 · -4 · -4 · · · · 4 · -4 · · ·
1e · · · 4 · 4 · · · 4 -4 4 4 4 · -4 8 · · 4 · -4 · · -4 · · · · · -4 ·
1f · · 8 4 · 4 · · · · · 4 -4 · -4 4 · · -4 · · 4 4 -4 · · 4 · -4 · · ·

Table 12. Minimum number of active S-boxes in R-round differential and linear characteristics for pR .

Rounds R 1 2 3 4 5

Minimum # of differentially active S-boxes 1 4 15 ≤ 44 ≤ 78
Minimum # of linearly active S-boxes 1 4 13 ≤ 43 ≤ 67

Results for R ≥ 4 are from heuristic search

S-box layer pS or the linear layer pL . The ANF of the S-box layer pS is given by:

y0,i = x4,i x1,i ⊕ x3,i ⊕ x2,i x1,i ⊕ x2,i ⊕ x1,i x0,i ⊕ x1,i ⊕ x0,i ,

y1,i = x4,i ⊕ x3,i x2,i ⊕ x3,i x1,i ⊕ x3,i ⊕ x2,i x1,i ⊕ x2,i ⊕ x1,i ⊕ x0,i ,

y2,i = x4,i x3,i ⊕ x4,i ⊕ x2,i ⊕ x1,i ⊕ 1,

y3,i = x4,i x0,i ⊕ x4,i ⊕ x3,i x0,i ⊕ x3,i ⊕ x2,i ⊕ x1,i ⊕ x0,i ,

y4,i = x4,i x1,i ⊕ x4,i ⊕ x3,i ⊕ x1,i x0,i ⊕ x1,i . (1)
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Table 13. Best known differential and linear characteristics for 4 and 5 rounds of p, given in truncated notation
with the pattern of active S-boxes S in each round r and the corresponding probability or bias [31,34].

r Active S-boxes # S log2(p) log2(ε)

(a) Differential 4-round characteristic
0 441326c0236cca84 23 − 47
1 8040000000040000 3 − 12
2 0000100004040000 3 − 6
3 c0489800262500a0 15 − 42
∑

44 − 107
(b) Linear 4-round characteristic
0 8181224200028685 15 − 19
1 0100004000000001 3 − 4
2 0000000010080001 3 − 7
3 04314f4725f80001 22 − 23
∑

43 − 50
(c) Differential 5-round characteristic
0 c01d986058edb14f 29 − 58
1 0040800000000001 3 − 12
2 0000100040000001 3 − 9
3 022030304201080d 13 − 30
4 732533f46a0d0a2d 30 − 84
∑

78 − 193
(d) Linear 5-round characteristic
0 8181224200028685 15 − 19
1 0100004000000001 3 − 4
2 0000000010080001 3 − 7
3 04314f4725f80001 22 − 43
4 04364206f5a80802 24 − 25
∑

67 − 94

The ANF of the linear layer pL is as follows, with index computations mod 64:

y0,i = x0,i ⊕ x0,i+19 ⊕ x0,i+28

y1,i = x1,i ⊕ x1,i+61 ⊕ x1,i+39

y2,i = x2,i ⊕ x2,i+1 ⊕ x2,i+6

y3,i = x3,i ⊕ x3,i+10 ⊕ x3,i+17

y4,i = x4,i ⊕ x4,i+7 ⊕ x4,i+41. (2)

Algebraic Degree The algebraic degree of the round function p is 2, so the degree after R
rounds is upper-bounded by 2R . A tighter bound based on the general bounds by Canteaut
[9, Theorem 1 with � = 192 for both S and S−1] and Boura et al. [10, Theorem 2 with
γ = 3 for both S and S−1] is listed in Table 16.
Diffusion Table 17 provides an overview of the diffusion properties of up to 3 rounds of
Ascon’s permutation. After 3 rounds, almost all input bits appear in the ANF of each
output bit (Table 17a). Finally, we list the maximum monomial degree for each input bit
xw,0 in the ANF after 1 round (Table 17c) and after 2 rounds (Table 17d).
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Table 14. Differential characteristics for forgeries in Ascon .

r Active S-boxes # S

(a) Collision-producing differential for Ascon-128’s 6-round state update
0 8000000000000000 1
1 8100000001400004 5
2 9902a00003c64086 17
3 fcf7eee14feefdf7 48
4 dba6fe7b4fef8cef 45
5 0000400000000000 1
∑

117
(b) Collision-producing differential for Ascon-128a’s 8-round state update
0 8000000000000000 1
1 c200000000000000 3
2 e238e10000000000 11
3 73b7fbf67f6f19f0 44
4 bb4ffe8fd5dddf7f 48
5 fffffdffffffffff 63
6 2d0486c240902436 20
7 2080000000000000 2
∑

192
(c) Truncated differential for 4/12 rounds of Ascon’s finalization, p = 2−101 [34]
0 8000000000000000 1
1 8000100801000004 5
2 d302904803844086 18
3 fbbff36d73e4f045 41

Table 15. Impossible differential and zero-correlation linear hull for 5 rounds of p, shown using bitwise input
and output differences and masks.

(a) Impossible differential (5 rounds) Input difference Output difference

x0: 0000000000000000 0100000000100002
x1: 0000000000000000 0000000000000000
x2: 0000000000000000 → 0000000000000000
x3: 0000000000000000 0000000000000000
x4: 8000000000000000 0000000000000000

(b) Zero-correlation linear hull (5 rounds) Input mask Output mask

8000000000000000 0000000000000000
0000000000000000 0000000000000000
0000000000000000 → fe08629e8e4b766a
0000000000000000 0000000000000000
0000000000000000 0000000000000000
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Table 16. Upper bound for the algebraic degree after R rounds [9, Theorem 1], [10, Theorem 2] (not including
effects of initial structures).

Rounds R 1 2 3 4 5 6 7 8 9 10 11 12

deg(pR) ≤ 2 4 8 16 32 64 128 256 298 312 317 319
deg(p−R) ≤ 3 9 27 81 209 283 307 314 318 319

Table 17. Diffusion statistics of the Ascon permutation after round r .

Linearization and Initial Structures Distinguishers based on the degree can be combined
with different initial structures that linearize the first few rounds in order to create a vector
space or linear intermediate ANF with respect to the selected input variables. Besides
generic structures (e.g., 0, 1, or 5 cube variables at each S-box input), several structures
using the specific properties of Ascon’s S-box have been proposed [34,67]. For example,
input bits x2,i are multiplied with neither x0,i nor x4,i in the first round.

By imposing bit conditions on certain input bits (corresponding to the key in Ascon),
it is possible to find sufficiently large cubes such that no cube variables multiply after 1
round and one specific cube variable does not multiply with any others after 2 rounds
[67]. An alternative approach suggested by Li et al. [67] does allow quadratic monomials
after 1 round, but ensures that they are not multiplied with any other monomials after 2
rounds.
Zero-Sum and Cube Attacks The low degree of the S-box permits inside-out zero-sum
distinguishers on the permutations pa and pb, so they can not be considered as perfect
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Table 18. Division property results.

(a) S-box property [58]
k 0 1 2 3 4 5

D5
k 0 1 1 2 2 5

(b) Integral distinguishers for the permutation [91]
Rounds R 5 6 7 8 9 10 11

log2(data) 18 35 65 130 258 300 315

random permutations. The full 12-round permutation can be distinguished with 2130

data [34] (4 inverse rounds, free middle round, and 7 forward rounds, see Table 16), or
11 rounds with complexity 285 below the security bound (4 + 1 + 6 rounds, with the
data complexity a multiple of the S-box size 5 for the free inner round). However, we
are not aware of attacks able to exploit these properties for attacks on the authenticated
cipher or hash function.

For key-recovery attacks in a nonce-respecting setting, cube variables can be posi-
tioned in the nonce and cube-like attacks can exploit that the cube sum after the round-
reduced initialization only depends on selected key bits [34]. Using conditional initial
structures of dimension 65 that ensure degree 2 after 2 rounds and thus degree at most
64 after 7 rounds, Li et al. [67] propose conditional cube attacks on 7 of 12 rounds of
Ascon’s initialization.

In a similar spirit to initial structures, it is also possible to linearize a few rounds of
Ascon’s permutation in order to find preimages for heavily round-reduced versions of
Ascon-Xof as shown in [37]. Apart from that, an upper bound on the degree of the
round-reduced Ascon permutation can be used to marginally speed-up a brute-force
search for preimages as suggested by Bernstein [21]. For instance, it is possible to find
a preimage for a version of Ascon-Xof where the number of rounds is reduced to 6 out
of 12 and the output is truncated to 64 bits with a complexity of 263.3 [37].
Other Properties Besides linear, differential, and algebraic properties, other relevant
cryptographic properties exist. We discuss some of them next.
Integral Distinguishers and Division Property Based on the division property, Todo [91]
proposes integral distinguishers for the Ascon permutation, where up to 7 rounds can
be evaluated using less than 2128 data (Table 18b).

Göloğlu et al. [58] list the division properties of Ascon’s S-box S and conclude that
these values are optimal with respect to the degree (Table 18a).
Subspace Trails Leander et al. [69] analyze the existence of subspace trails. For Ascon’s
permutation, they show that the longest subspace trails using 1-linear structures cover 3
rounds (dimension 298) or 1 inverse round (dimension 125).
SAT Solvers Dwivedi et al. [42] use SAT solvers for a state recovery attack on 2 (out of
8) rounds of the data processing phase of Ascon-128a.

6.4. List of Published Analysis

As the primary recommendation for lightweight authenticated encryption in the final
portfolio of the CAESAR competition [87], Ascon has received a lot of attention and
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several results regarding its security have been published. All the results published so far
support the security of Ascon and its underlying permutation. In other words, no security
vulnerabilities have been shown so far and the best attacks target the initialization of
Ascon reduced to 7 (out of 12) rounds, concluding that Ascon has a security margin of
5 rounds (42% of the 12 rounds).

The following list contains both results evaluating the permutation and evaluation
of the security of Ascon’s authenticated encryption, either using variants of Ascon’s
permutation, or idealized versions of it.

• Detailed analysis of Ascon’s differential-linear properties [11].
• Improved 4-round differential-linear analysis and subspace trails [90].
• Integral distinguishers for the round-reduced inverse Ascon [94].
• Subspace trails for a small number of rounds for Ascon’s permutation [69].
• Evaluation of the security of Ascon in misuse settings [92].
• Cube-like key-recovery attack on 7 (out of 12) rounds of the initialization of Ascon

in 2103.9 time [67].
• Cube-like attacks in a nonce-misuse setting on round-reduced Ascon [70].
• SAT-based state recovery on 2 (out of 8) rounds of the data processing of Ascon-

128a [42].
• Evaluating the properties of Ascon’s authenticated encyption mode regarding re-

forgeability [48].
• Truncated, impossible, and improbable differential distinguishers for 4 and 5 rounds

of Ascon’s permutation. Differential distinguishers based on undisturbed bits for
to 5 rounds reduced variants of Ascon with 2109 data [89].

• Security of Ascon’s S-box with respect to the division property [58].
• Several linear characteristic for Ascon’s permutation [31].
• Ascon’s authenticated encryption mode supports secure implementations on limited-

memory devices [2].
• Evaluation of Ascon’s permutation using the division property [91].
• Suggestions to absorb authenticated data more efficiently [86].
• Evaluation of the resistance of Ascon’s permutation against algebraic, differential,

linear, and differential-linear attacks. Cube-like and differential-linear key recovery
attacks on round-reduced variants of Ascon. Differential-based forgery attacks on
round-reduced Ascon [34].

• Security proof for Ascon’s authenticated encryption mode even for higher rates
[62].

• Security analysis and bounds for the full-state keyed duplex with application to
Ascon-128 and Ascon-128a [43].

• Discussing security and leakage-resilience of Ascon’s mode of operation [55].

7. Implementation

Since Ascon is based on the sponge and duplex constructions, it just relies on the
evaluation of cryptographic permutations in forward direction to allow hashing and
authenticated encryption. In particular, there is no need to implement the inverse of the
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Table 19. Ascon-128 and Ascon-128a software performance in cycles per byte.

Message length 1 8 16 32 64 1536 Long

(a) Ascon-128
AMD Ryzen 7 1700a 14.5 8.8 8.6
Intel Xeon E5-2609 v4a 17.3 10.8 10.5
Cortex-A53 (ARMv8)a 18.3 11.3 11.0
Intel Core i5-6300U 367 58 35 23 17.6 11.9 11.4
Intel Core i5-4200U 521 81 49 32 23.9 16.2 15.8
Cortex-A15 (ARMv7)a 69.8 36.2 34.6
Cortex-A7 (NEON) 2705 250 150 99 73.2 48.8 47.9
Cortex-A7 (ARMv7) 1871 292 175 115 86.6 58.3 57.2
ARM1176JZF-S (ARMv6) 2189 340 202 133 97.9 64.4 65.3
(b) Ascon-128a
AMD Ryzen 7 1700a 12.0 6.0 5.7
Intel Xeon E5-2609 v4a 14.1 7.3 6.9
Cortex-A57 (ARMv8)a 15.1 7.6 7.3
Intel Core i5-6300U 365 47 31 19 13.5 8.0 7.8
Intel Core i5-4200U 519 67 44 27 18.8 11.0 10.6
Cortex-A15 (ARMv7)a 60.3 25.3 23.8
Cortex-A7 (NEON) 2805 274 133 83 57.6 33.5 32.6
Cortex-A7 (ARMv7) 1911 255 161 102 71.3 42.3 41.2
ARM1176JZF-S (ARMv6) 2267 303 191 120 84.4 50.0 50.2

Message length is length of encrypted plaintext with empty associated data
aResults taken from eBACS [45]

permutation, or other often used components in authenticated encryption schemes like a
key schedule, masks, Galois field multiplications, etc. This together with the small state
size of 320 bits minimizes the code size and register pressure in software and the area
requirements in hardware. Still, the state size of 320 bits is large enough to provide both
hashing and authenticated encryption with 128 bits of security.
Software Implementations A preliminary overview of the software performance of As-
con-128 and Ascon-128a is given in Table 19a, b. Detailed software performance re-
sults and comparisons for a large number of platforms are given in eBACS, the ECRYPT
Benchmarking of Cryptographic Systems [45]. Additional software benchmarking re-
sults for micro controllers (including size and runtime) of lightweight authenticated
encryption schemes submitted to NIST are maintained at [76]. The software perfor-
mance of Ascon-Hash and Ascon-Xof is largely the same as for Ascon-128 with
doubled cycles per byte.
Hardware Implementations Detailed hardware performance results and comparisons for
a large number of implementations are given in the Athena project [5]. A preliminary
overview of the hardware performance of Ascon-128 and Ascon-128a for different use
cases is given in Table 20a, b. Note that the CAESAR API implies a certain overhead,
in particular for lightweight designs like Ascon. However, this cost can be significantly
reduced by using a dedicated lightweight interface as shown in [59].
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Table 20. Hardware reference implementations of Ascon-128/ Ascon-128a using the CAESAR Hardware
API [56,61]. Excluding area for Pre-Processor (869/1491 GE), Post-Processor (1032/1344 GE), HDR Buffer
(836 GE).

Design Area [kGE] Throughput [Mbps]

(a) Ascon-128
1 round 9.42 4888
2 rounds 12.99 8482
3 rounds 16.59 10343
6 rounds 27.28 12261
(b) Ascon-128a
1 round 9.68 7326
2 rounds 13.25 11743
4 rounds 20.38 16675

7.1. Efficiency for Short Messages

The simplicity of the design and the small state play also a crucial role in the efficiency of
Ascon’s authenticated encryption for small messages. For instance, if no associated data
is present, Ascon-128 can encrypt plaintexts strictly smaller than 8 bytes and Ascon-
128a can encrypt plaintexts strictly smaller than 16 bytes with just two calls to the
permutation pa . Preliminary software performance results for several short messages
and platforms are also shown in Table 19a, b.

Ankele and Ankele [1] give a detailed performance overview of the second round
CAESAR candidates for short messages. In many scenarious (e.g., SSH with 5 bytes
of associated data and 1 byte of plaintext), Ascon-128a is able to perform very well,
even when compared to AES-based designs which use native AES instructions on Intel
Skylake processors [1, Figure 6].

7.2. Flexibility of the Permutation

The permutation of Ascon is naturally defined on 64-bit words using only bitwise
Boolean functions (and, not, xor) and rotations within these 64-bit words. As a con-
sequence, Ascon does not require any data-dependent table lookups. Hence, it lends
itself to bitsliced implementations in software as well as simple and clean hardware
implementations.
Instruction Parallelism The S-box and the linear layer provide some flexibility regarding
the number of instructions that can be carried out in parallel and additional temporary
registers that are needed to store intermediate computations in software implementa-
tions. A bitsliced implementation of the S-box that focuses on instruction parallelism
is shown in Fig. 5. Considering that the linear layer is defined separately on each of
the 5 64-bit words, up to 5 instructions can be carried out in parallel in nearly every
phase of the permutation. This implementation aspect of Ascon allows for short critical
paths in hardware and makes use of the out-of-order execution capabilities of high-end
processors.
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Fig. 5. Pipelinable instructions for bitsliced implementation of 5-bit S-box S(x).

Fig. 6. Reducing register pressure for bitsliced implementation of the 5-bit S-box S(x).

Bit Interleaving However, Ascon can also be implemented on systems that do not have
a natural 64-bit datapath, like 8-, 16-, and 32-bit processors. This can be done by em-
ploying a technique called bit interleaving as described in the Keccak implementation
overview [13]. By using this technique, the single bits of one of Ascon’s 64-bit words
are stored interleaved in two 32-bit, four 16-bit, or eight 8-bit registers. This technique
allows to translate rotations within the 64-bit words to rotations (and re-labeling) of the
smaller registers. Since the other operations of Ascon are bitwise Boolean functions,
they are unaffected by the changed representations.

That bit interleaving is a very viable strategy can be seen in the work of Bangma
[6], where the performance of Ascon-128 is compared with implementations of the
CAESAR finalists ACORN, AEGIS-128L, Deoxys-II-128, and MORUS-1280-128 on
an ARM Cortex-A8. Here, Ascon-128 is the fastest cipher for short plaintexts of 64
bytes [6, Table 5.1].
Reducing Register Pressure To reduce register pressure on resource constrained devices,
the S-box of Ascon can also be implemented using just two temporary registers as shown
in Fig. 6. This low register implementation was inspired by [26,41] and later extended
to protect the masked Ascon S-box against SIFA in [30]. In particular, masked imple-
mentations benefit from this low register usage since the number of registers increase
linearly with the masking order. Additionally, the resulting implementation of the S-box
is uniform (a requirement for threshold implementations [75]) even without the need for
additional online random input data [30].

7.3. Further Reading on Efficiency

Benchmarking Efforts Several teams are working on benchmarking efforts where up-
dates are expected throughout the NIST lightweight cryptography project. Similarly, the
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CAESAR competition has inspired several such efforts. Benchmarking initiatives with
online resources include the following:

• Athena: Hardware evaluation and CAESAR HW API [5,61,88,93] https://cryptogra
phy.gmu.edu/athena/index.php?id=LWC

• eBACS: ECRYPT Benchmarking of Cryptographic Systems [45] http://bench.cr.
yp.to

• LaS3: NIST LWC software performance benchmarks on microcontrollers [81]
https://lwc.las3.de

• Rhys Weatherly: Software benchmarking for 32-bit embedded architectures https://
rweather.github.io/lightweight-crypto/index.html

• Ralph&Robin Ankele: Software benchmarking of 2nd round CAESAR candidates
[1] https://github.com/TheBananaMan/caesar_benchmarks_secondround

• BRUTUS: Testing CAESAR authenticated encryption candidates for weaknesses
[82] https://github.com/mjosaarinen/brutus

Hardware implementations are reported by [40,46,47,63,80,84,88,93].
Software implementations are reported by [6,38,39,66,85].

7.4. Implementation Security and Robustness

Ascon’s permutation uses S-boxes of degree 2 and thus lends itself to efficient counter-
measures against side-channel attacks by masking with a low overhead. The low-register
implementation of the Ascon S-box given in Fig. 6 can be extended to any masking
order as shown in [30]. Using this approach, only two additional temporary registers
are needed for each share and no additional randomness is needed to get a uniform
implementation of the Ascon S-box. As a result, masked software implementations of
Ascon result in a performance penalty with low overhead.

Additionally, leveled implementations of Ascon are possible to improve the robust-
ness and/or security of the design [4,7]. Examples are side-channel protected imple-
mentations with different strength of the key XORs, pa and/or pb. Also, the plaintext
leakages can be reduced by limiting the number of decryption failures.

Many protected hardware implementations of Ascon have been published already.
Gross et al. [59] provide threshold implementations of Ascon-128 as small as 7.97 kGE.
Additionally, many other state-of-the-art masking approaches have been applied on As-
con, like UMA [51] and DOM [53], even for high protection order (see Table 21). Links
to various implementations of Ascon, including DOM and UMA implementations, can
be found on the Ascon website1.

Next, we give a list of papers that either evaluate the side-channel and fault resistance
of Ascon or elaborate protection mechanisms against side-channel and fault attacks
[4,7,12,28–30,50,51,55,60,68,77–79,83].

1https://ascon.iaik.tugraz.at/.

https://cryptography.gmu.edu/athena/index.php?id=LWC
https://cryptography.gmu.edu/athena/index.php?id=LWC
http://bench.cr.yp.to
http://bench.cr.yp.to
https://lwc.las3.de
https://rweather.github.io/lightweight-crypto/index.html
https://rweather.github.io/lightweight-crypto/index.html
https://github.com/TheBananaMan/caesar_benchmarks_secondround
https://github.com/mjosaarinen/brutus
https://ascon.iaik.tugraz.at/
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Table 21. DOM implementations for various protection orders [51,52].

Protection Order Pipelined Parallel

[kGE] [Mbps] [kGE] [Mbps]

1 10.86 108 28.89 2246
2 16.19 108 53.00 1896
3 21.59 110 81.21 1903
4 27.13 71 118.27 1786
5 32.76 95 161.87 1868
…
13 81.20 70 726.00 1833
14 87.75 71 828.19 1439
15 94.24 50 926.34 1480

8. Conclusion

Ascon-128 and Ascon-128a have been shown to be robust authenticated encryption
schemes with a comfortable security margin that can be implemented efficiently on
a wide range of platforms including hardware and software. In addition, their design
allows for the addition of countermesures against implementation attacks, most notably
side-channel attacks, at a rather low overhead.

Based on the well-analyzed permutation underlying Ascon-128 and Ascon-128a, we
have specified Ascon-Hash and Ascon-Xof to enhance the functionality of the Ascon
cipher suite. Thus, implementing Ascon’s permutation allows to realize authenticated
encryption and hashing without the need of additional cryptographic primitives. The
whole package has been submitted to the NIST lightweight cryptography standardization
process.
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