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Abstract. This paper presents preliminary experimental results for the imple-
mentation of the third-round NIST finalists CRYSTALS-Kyber and Saber on the
ARMv8 architecture. Our implementation uses NEON instructions to speed up
key generation, encapsulation, and decapsulation of the reference codes. The
benchmarks are performed on three devices: an Orange Pi WinPlus (Cortex-
A53), a Raspberry Pi 4 (Cortex-A72), and a MacBook Air based on an Apple
M1 chip. The experimental results show substantial improvements for Kyber and
Saber, with speed-ups in the ranges 1.16−1.38× and 1.21−1.96×, respectively.
We focused on the most time-consuming operations of each cryptosystem; how-
ever, similar works suggest that more expressive speed-ups can be obtained by
extending the use of NEON instructions to other primary sub-routines.

1. Introduction

In 2016, the U.S. National Institute of Standards and Technology (NIST) initiated a pro-
cess for the standardization of public-key quantum-resistant cryptographic algorithms.
The Post-Quantum Cryptography Standardization project [NIST 2017] requested nom-
inations of key-encapsulation mechanisms (KEMs), public-key encryption (PKE) algo-
rithms, and digital signature schemes. This process drew strong interest from the aca-
demic community and the industry in the past few years to develop and implement post-
quantum cryptosystems in various platforms, ranging from the popular ARM Cortex-
M4 microcontroller to the Apple M1 chip and Intel CPUs. From the beginning of the
standardization project, lattice-based cryptography has been the most prominent class
of problems. During the third round, it represented five of the seven finalists. Particu-
larly, among the lattice-based KEMs selected as third-round finalists were CRYSTALS-
Kyber [Avanzi et al. 2019] and Saber [Basso et al. 2020]. On July, 2022, NIST an-
nounced the end of the third round and the standardization of Kyber KEM, along with
CRYSTALS-Dilithium, Falcon, and SPHINCS+ for digital signatures. The fourth-round
candidates, however, do not include Saber.

Our contributions. In this paper, we improve the running time of Kyber and Saber on the
ARMv8 architecture, which embeds IoT devices, smartphones, and laptops. Particularly,
the ARMv8-A architecture profile contains an Advanced SIMD (Single Instruction Mul-
tiple Data) architecture extension, named NEON, that provides additional instructions
which performs mathematical operations in parallel on multiple data streams. In this



context, we first profiled Kyber’s and Saber’s most expensive operations, replacing the
original portable-C implementation in the reference code with NEON-optimized coun-
terparts. For Kyber, we focused on binomial sampling and computing the inner product
in the module Rk. Our NEON implementation includes a vectorized version of Mont-
gomery and Barrett reduction algorithms. Moreover, we designed an ARMv8-optimized
polynomial multiplication for Saber combining the Schoolbook, Karatsuba, and Toom-
Cook algorithms. For Kyber, our performance gains compared to the reference code for
key generation, encapsulation, and decapsulation are 1.16 − 1.38×, 1.16 − 1.34×, and
1.19 − 1.35×. Moreover, our speed-ups for Saber in key generation, encapsulation, and
decapsulation are in 1.21− 1.83×, 1.28− 1.86×, and 1.44− 1.96×, respectively.

2. Background

In this section, we briefly present the third-round CRYSTALS-Kyber [Avanzi et al. 2019]
and Saber [Basso et al. 2020] submissions, focusing on their main system parameters.

CRYSTALS-Kyber. CRYSTALS-Kyber is a key-encapsulation mechanism whose se-
curity is based on the hardness of solving the Mod-LWE problem. Kyber KEM is obtained
by instantiating Kyber PKE and applying a variant of the Fujisaki-Okamoto transform.
The PKE provides the core functions for the tuple of algorithms (KGen,Encaps,Decaps)
which defines the KEM. The PKE scheme is mainly parameterized by the integers n,
k, and q. The parameters n and q define the underlying polynomial ring as R =
Zq[x]/(xn + 1), and k is the rank of the module Rk. Notice that n and q are always
n = 256 and q = 3329; thus, the values for k, which are {2, 3, 4}, define the target
security level and the parameter set as either Kyber-512, Kyber-768, or Kyber-1024.

Saber. Saber consists of a public-key encryption scheme and a key encapsulation mech-
anism that rely on the hardness of the Mod-LWR problem. Similarly to Kyber, a version
of the Fujisaki-Okamoto transform is applied to an IND-CPA encryption scheme to obtain
the IND-CCA2-secure key encapsulation scheme. Saber is mainly parameterized by the
integers n, `, q, p, and T . The parameters n and ` define the ring R = Z[x]/(xn + 1) and
the rank of the module R`×1. In particular, the value of n is fixed as 256 and ` = {2, 3, 4}
varies according to the parameter set, which is either LightSaber, Saber, or FireSaber. In
turn, q = 2εq , p = 2εp , and T = 2εT are the moduli, each chosen as a power of two such
that εq > εp > εT . Concretely, q = 213, p = 210, and T = {3, 4, 6}.

3. Performance Evaluation

We collected benchmarks for the main functions of Kyber and Saber in several devices,
representing a range of possible ARMv8 processors. The performance of our implementa-
tions was measured using the Google Benchmark framework in three devices: an Orange
Pi WinPlus (Cortex-A53), a Raspberry Pi 4 (Cortex-A72), and an Apple MacBook Air
featuring the M1 chip. The OrangePi board has four in-order CPUs with maximum and
minimum clock frequencies of 1152 MHz and 648 MHz. However, we performed our
experiments at the constant frequency of 1008 MHz. Moreover, this board supports AES,
SHA-1, and SHA-2 cryptographic instructions. The Raspberry Pi 4 contains four CPUs
running at the maximum clock frequency of 1500 MHz and a minimum clock frequency
of 600 MHz. The M1 device features eight cores (four performance and four efficiency
cores) running at a maximum CPU clock rate of 3.2 GHz, and supports the ARMv8.4-A



instruction set, the aforementioned cryptographic instructions, and SHA-3 instructions.
The binaries were compiled using the Clang compiler versions 10 (OrangePi) and 13
(Raspberry Pi 4 and M1) with the -O3 optimization flag. Our cryptographic primitives
core uses the ARMv8 AES and SHA-3 instructions to improve the performance of sym-
metric primitives used by both KEMs whenever possible. Moreover, it has an optimized
implementation of Keccak, targeting the Cortex-A53 and A72 processors and accelerating
SHA-3 and SHAKE functions.

CRYSTALS-Kyber. We optimized Kyber for the ARMv8 architecture providing a
NEON implementation for its most time-consuming functions: sampling from the cen-
tered binomial distribution B parameterized by η = 2 and the inner product in the module
Rk. Notice that Kyber requires samples from Bη=2 and Bη=3, but focusing on the first case
impacts most of Kyber’s parameter sets, as well as all three algorithms for key genera-
tion, encapsulation, and decapsulation. The inner product is invoked during matrix-vector
multiplications and by the PKE scheme. Also, the point-wise product is computed as the
product of degree-one polynomials instead of scalars. As a result, each point-wise product
requires six multiplications modulo q followed by a Montgomery reduction. Therefore,
NEON implementations of three functions were designed: multiplication modulo q fol-
lowed by Montgomery reduction; point-wise multiplication of degree-one polynomials;
and inner product of vectors of polynomials in Z3329[x]/(x

256+1). The reduction modulo
q at the end of the inner product was performed using a NEON implementation of the
Barrett reduction algorithm. These optimizations were based on state-of-the-art imple-
mentations targeting the ARMv8 architecture [Sanal et al. 2021, Nguyen and Gaj 2021].

Saber. Profiling results for LightSaber, Saber, and FireSaber indicated that most of the
running time in all variants is spent on polynomial multiplication. In this sense, we de-
signed an ARMv8-optimized NEON implementation combining the Schoolbook, Karat-
suba 2-way, Karatsuba 4-way, and Striding Toom-Cook algorithms for polynomial multi-
plication on inputs of sizes 8, 16, 64, and 256, respectively. Although this combination of
algorithms for polynomial multiplication is new, it is very similar to the one presented by
Nguyen and Gaj [Nguyen and Gaj 2021]. Nonetheless, the two formulations were devel-
oped independently.

3.1. Experimental Results

In this section, we present the running time, in microseconds, for the reference code and
our ARMv8-optimized implementation in the Orange Pi (Cortex-A53), Raspberry Pi 4
(Cortex-A72), and M1 platforms. Tables 1 and 2 present experimental results for Kyber
and Saber in all three security levels. For Kyber, the speed-ups range from 1.16 to 1.38×.
The most modest results were obtained in the Cortex-A72 processor (1.16− 1.22×). On
the other hand, for Cortex-A53 and M1 the speed-ups are 1.23−1.38× and 1.27−1.34×,
respectively. The most time-consuming operation of our implementation of Saber is the
polynomial multiplication. By providing an ARMv8 implementation using variants of the
Toom-Cook algorithm, we obtained speed-ups ranging from 1.21 to 1.96×. The results
obtained in the Cortex-A72 processor were moderate, between 1.21 and 1.48×. More
expressive gains were observed in the Cortex-A53, for which the minimum improvement
was 1.69×. In the middle range, for the M1 chip, the results are in the interval 1.52 −
1.64×. Notice that the Raspberry Pi 4 platform does not provide the ARMv8 instructions
for SHA-3 and AES, which can explain the modest speed-ups compared to A53 and M1.



Moreover, Kyber and Saber have taken advantage of the SHA-3 ARMv8 instructions
present in the M1 chip for efficiently computing their symmetric primitives. However, we
emphasize that better results could be achieved through parallelization of SHA-3/SHAKE
calls.

Table 1. Benchmarking results, in microseconds, of the portable-C reference
code and our ARMv8-optimized implementation of Kyber.

Cortex-A53 Cortex-A72 M1
Kyber-512 KGen Encaps Decaps KGen Encaps Decaps KGen Encaps Decaps
Reference 144 180 209 214 158 88.3 12.1 15.2 15.0
This work 107 140 156 184 136 73.7 9.54 11.4 11.7
Speedup 1.35 1.29 1.34 1.16 1.16 1.20 1.27 1.33 1.28
Kyber-768 KGen Encaps Decaps KGen Encaps Decaps KGen Encaps Decaps
Reference 252 297 338 262 213 145 21.2 23.8 23.9
This work 183 229 251 222 181 119 16.5 17.7 18.1
Speedup 1.38 1.30 1.35 1.18 1.18 1.22 1.28 1.34 1.32
Kyber-1024 KGen Encaps Decaps KGen Encaps Decaps KGen Encaps Decaps
Reference 381 432 483 325 282 216 33.8 34.4 35.8
This work 286 350 384 276 243 182 26.4 26.5 27.2
Speedup 1.33 1.23 1.26 1.18 1.16 1.19 1.28 1.30 1.32

Table 2. Benchmarking results, in microseconds, of the portable-C reference
code and our ARMv8-optimized implementation of Saber.

Cortex-A53 Cortex-A72 M1
LightSaber KGen Encaps Decaps KGen Encaps Decaps KGen Encaps Decaps
Reference 172 240 292 299 176 115 12.2 15.7 16.8
This work 102 138 154 248 138 79.6 7.56 10.3 10.6
Speedup 1.69 1.74 1.90 1.21 1.28 1.44 1.61 1.52 1.58
Saber KGen Encaps Decaps KGen Encaps Decaps KGen Encaps Decaps
Reference 350 449 527 367 256 204 21.9 27.7 29.8
This work 197 246 270 297 195 138 14.0 17.5 18.3
Speedup 1.78 1.83 1.95 1.24 1.31 1.48 1.56 1.58 1.63
FireSaber KGen Encaps Decaps KGen Encaps Decaps KGen Encaps Decaps
Reference 595 724 831 462 365 320 35.9 43.6 46.6
This work 326 389 423 361 268 216 22.5 27.3 28.4
Speedup 1.83 1.86 1.96 1.28 1.36 1.48 1.60 1.60 1.64

4. Comparison with State-of-the-art Implementations

Nguyen and Gaj [Nguyen and Gaj 2021] and Sanal et al. [Sanal et al. 2021] can be con-
sidered the first to provide a complete ARMv8-A implementation of the third-round final-
ist Kyber. Nguyen and Gaj also implement the third-round finalist Saber. Additionally,
Becker et al. [Becker et al. 2021] present improved versions for the polynomial multipli-
cation algorithms used in Saber and Kyber. Table 3 reports the speed-ups obtained by
related works in the literature compared to the reference code. This table combines the
updated data reported by Nguyen and Gaj on their public repository1 and Becker et al. in
their paper [Becker et al. 2021].

1https://github.com/GMUCERG/PQC_NEON.

https://github.com/GMUCERG/PQC_NEON
https://github.com/GMUCERG/PQC_NEON


Table 3. Speed-ups for Kyber-768 and Saber on Cortex-A72 and Apple M1 re-
ported by state-of-the-art implementations.

Cortex-A72 M1
Kyber-768 KGen Encaps Decaps KGen Encaps Decaps
[Becker et al. 2021] 2.37 2.33 2.88 4.42 3.33 4.48
[Nguyen and Gaj 2021] 2.16 2.13 2.56 3.08 2.59 3.34
[Sanal et al. 2021] 1.65 1.65 1.95 – – –
Saber KGen Encaps Decaps KGen Encaps Decaps
[Becker et al. 2021] 2.16 1.96 2.01 2.27 2.09 2.26
[Nguyen and Gaj 2021] 1.47 1.50 1.58 1.57 1.62 1.78

Nguyen and Gaj explored using Toom-Cook and NTT for polynomial multiplica-
tion on Saber. However, the replacement of Toom-Cook by NTT showed a slowdown in
overall cryptosystem performance. Also, they present speed-ups for Kyber, reducing the
number of calls to the Barrett reduction in the inverse NTT and vectorizing its implemen-
tation using NEON instructions. Sanal et al. focus on optimizing Kyber for 64-bit ARM
Cortex-A processors, presenting experimental results on Cortex-A75 and Apple A12. No-
tice that the results reported in Table 3 on Cortex-A72 were further obtained by Becker
et al.. In their work, the NTT operations are similar to those used by Nguyen and Gaj.
In addition, the authors employ NEON instructions for implementing Barrett and Mont-
gomery reductions and sampling from a centered binomial distribution. More recently,
Becker et al. proposed a combination of Montgomery multiplications with Barrett reduc-
tions, resulting in a “Barrett multiplication”. For Saber and Kyber, they treated matrix-
vector multiplications such that not only the vector is cached but also parts of the product.
Other improvements building upon Nguyen and Gaj’s work include using 32-bit NTTs
for Saber instead of the 16-bit version that proved inferior to the Toom-Cook approach.
In this context, our preliminary results for Kyber-768 and Saber showed speed-ups in
both Cortex-A72 (1.18 − 1.48×) and Apple M1 (1.28 − 1.63×) architectures. However,
our implementations still require further optimizations to match the state-of-the-art. By
implementing a NEON-optimized Toom-Cook-based approach for polynomial multipli-
cation on Saber, we achieved results similar to those reported by Nguyen and Gaj. On
the other hand, our implementation of Kyber still requires at least a NEON-optimized
version of the NTT to obtain running times similar to those reported by Sanal et al. on the
Cortex-A72.

5. Conclusion
This work presented preliminary optimization results for CRYSTALS-Kyber and Saber
targeting the ARMv8 architecture. Our benchmarks were performed on the ARM Cortex-
A53 and Cortex-A72 processors and the Apple M1 chip. We used NEON instruc-
tions to accelerate the most time-expensive routines and compared our implementations
with the reference code submitted to the third round of NIST’s standardization pro-
cess, since our current results still do not outperform state-of-the-art ARMv8-A im-
plementations. Table 4 compares our Kyber and Saber implementations on the M1
platform. Both KEMs perform similarly apart from the key-generation algorithm, al-
though Saber has smaller system parameters. In most cases, our preliminary implemen-
tation of Kyber outperforms Saber on Cortex-A53 and A72. For further optimizations,
we consider targeting Kyber’s NTT transforms, as done in recent works in the litera-



ture [Sanal et al. 2021, Becker et al. 2021, Nguyen and Gaj 2021]. For Saber, implemen-
tations of matrix-vector multiplications of the form A>s can explore the fact that rows
are multiplied by the same vector s to reduce the number of memory accesses to elements
of s. Moreover, our Saber implementation can be improved by using NEON instructions
to sample from a centered binomial distribution. Simpler optimizations such as vector-
ized polynomial addition are also possible. The incorporation of countermeasures against
side-channel and fault attacks was left as future work, as the possibility of proposing a
masked implementation for the decapsulation algorithm.

Table 4. Comparison of Kyber and Saber in terms of running time, in microsec-
onds, and parameters’ byte size in the Apple M1 chip.

Parameter Set Running time (µs) Parameter sizes (KB)
KGen Encaps Decaps Public Key Secret Key Ciphertext

Kyber-512 9.54 11.4 11.7 800 1632 768
LightSaber 7.56 10.3 10.6 672 1568 736
Kyber-768 16.5 17.7 18.1 1184 2400 1088
Saber 14.0 17.5 18.3 992 2304 1088
Kyber-1024 26.4 26.5 27.2 1568 3168 1568
FireSaber 22.5 27.3 28.4 1312 3040 1472
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